

PI5A3159

SOTINY™ 1Ω Low-Voltage SPDT Analog Switch

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 2Ω at 3.0V
- Wide V_{CC} Range: +1.8V to +5.5V
- Low Power Consumption : $5\mu W$
- · Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 30ns max. at 5V
- High Off Isolation: -24dB at 10MHz
- -57dB (1 MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to 85°C
- Low On-Resistance Replacement for NC7SB3157
- Packaging (Pb-free & Green available):
- 6-pin SOT-23 (T)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

SOT23	TDFN	Name	Description
1	3	NO	Data Port
2	2	GND	Ground
3	1	NC	Data Port (Normally Closed)
4	6	COM	Common Output/Data Port
5	5	V _{CC}	Positive Power Supply
6	4	IN	Logic Control

Logic Function Table

Logic Input(s)	Function
0	NC Connected to COM
1	NO Connected to COM

Description

The PI5A3159 is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.8V to 5.5V, the PI5A3159 has a maximum On-Resistance of 4Ω at 1.8V, 2.4 Ω at 2.3V & 1 Ω at 4.5V.

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

Control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

PI5A3159 is a low On-Resistance replacement for the PI5A3157 and NC7SB3157.

Connection Diagrams

Absolute Maximum Ratings

Voltages Referenced to GND V _{CC}	0.5V to +5.5V
V _{IN} , V _{COM} , V _{NC} , V _{NO} ⁽¹⁾ or 30mA, whichever occurs first	0.5V to V ₊ +0.3V
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Note:	
Lead Temperature (soldering, 10s)	
Storage Temperature	65°C to +150°C
SOT23 (derate 7.1mW/°C above +70°C).	0.5W
Continuous Power Dissipation	

1. Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ^(3, 4)	VANALOG		Full	0		V _{CC}	V
On Pasistance	Pour		25		0.70	0.90	
On-Resistance	KON	$V_{CC} = 4.5 V,$	Full			1.1	
On-Resistance Match Be- tween Channels ⁽⁵⁾	ΔR_{ON}	$V_{NO} \text{ or } V_{NC} = +2.5 \text{ V}$	25		0.03	0.05	
			Full			0.10	Ω
(0)	R _{FLAT(ON)}	$V_{\rm CC} = 4.5 V_{\rm cc}$	25		0.08	0.12	
On-Resistance Flatness ⁽⁶⁾		$I_{COM} = -30 \text{mA},$ V _{NO} or V _{NC} = 1V, 1.5V, 2.5V	Full			0.15	
NO or NC Off Leakage	INO(OFF) OF	$V_{\rm CC} = 5.5 V_{\rm c}$	25	2	0.01	2	
Current ⁽⁷⁾	INO(OFF) OF	$V_{COM} = 0V,$ V_{NO} or $V_{NC} = 4.5V$	Full	-20		20	nA
(7)		$V_{\rm CC} = 5.5 V_{\rm c}$	25	-4		4	IIA
COM On Leakage Current ⁽⁷⁾	I _{COM(ON)}	$V_{COM} = 4.5V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	Full	-40	0.3	40	

Electrical Specifications - Single +5V Supply (continued)

 $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch								
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH level		2.0				
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW level				0.8		
Input Current with HIGH Voltage	I _{INH}	$V_{\rm IN}=2.4$ V, all others = 0.8V		-1	0.005	1		
Input Current with LOW Voltage	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μА	
Dynamic								
Turn On Times	4		25		20	35		
Turn-On-Time	ton	V _{CC} = 5V, See Fig. 1	Full			40	ns	
Turn-Off-Time	t _{OFF}		25		15	20		
			Full			35		
Due als Defense Males	t	See Fig. 3	25	1	12	14.5		
Dieak-Deloie-Make	ι _{BBM}		Full	1	17.5			
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		40		pC	
Off Isolation	O _{IRR}	$R_L = 50\Omega$, f = 1MHz, See Fig 4			-57		dL	
CrossTalk ⁽⁹⁾	X _{TALK}	$R_L = 50\Omega$, f = 1MHz, See Fig 4			36			
NC or NO Capacitance	C _{NC/NO(OFF)}	f = 1 MHz, See Fig 6			42		"Б	
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, See Fig 7			98		рг	
Supply								
Power-Supply Range	V _{CC}		Full	1.8		5.5	V	
Positive Supply Current	1 _{CC}	$V_{CC} = 5.5V, V_{IN} = 0V \text{ or } V_{CC},$ All Channels ON or OFF	Full		0.5	1	μΑ	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. Device is NOT guaranteed to function per the datasheet specification outside of 0 to V_{CC} range.

5. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

6. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

7. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

8. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.

9. Between any two switches. See Figure 5.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.0V, V_{INL} = 0.6V)$

Parameter	Symbol	Symbol Conditions		Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
On-Resistance	Dava	$V_{CC} = 3V, I_{COM} = -24mA,$	25		1.4	1.8	
	KON	$V_{\rm NO}$ or $V_{\rm NC} = 2.0 V$	Full			2.2]
On-Resistance Match	AD our		25		0.04	0.05	
Between Channels ⁽⁴⁾	ANON	$V_{CC} = 3.3V, I_{COM} = -24mA,$	Full		0.11		
On Pagistanaa Elatnass	Der imigan	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{V}, 2.0 \text{V}$	25		0.17	0.2]
On-Resistance Flatness	KFLAT(ON)		Full		0.25		
Dynamic							
			25		30	40	
Turn-On-Time	ton	$V_{CC} = 5V_{z}$	Full	İ	İ	55	ns
Turn-Off-Time	t _{OFF}	See Fig. 1	25		20	25	
			Full		İ	40	
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	21	29	1
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, R _{GEN} = 0V, See Fig 2	25		30		pC
Supply	•	·	•	•	•	•	-
Positive Supply Current	1 _{CC}	$V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V_{CC},$ All Channels ON or OFF	Full		0.5	1	μΑ
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH level	Full	2			V
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW level	Full			0.6	v
Input HIGH Current	I _{INH}	$V_{\rm IN} = 2.4$ V, all others = 0.8V	Full	-1		1	
Input LOW Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V	Full	-1		1	μΑ

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{INH} = 1.8V, V_{INL} = 0.6V)$

Parameter	Symbol	Conditions	Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
On Pagistanaa	D	$V_{\rm CC} = 1.8 V, I_{\rm COM} = -2 m A,$	25		1.6	2	
OII-Resistance	KON	$V_{\rm NO}$ or $V_{\rm NC} = 1.5 V$	Full			2.7	
On-Resistance Match	AD		25		0.13	0.16	
Between Channels ⁽⁴⁾	AKON	$V_{CC} = 1.8V, I_{COM} = -2mA,$	Full		0.2		
On Desistance Eletrose	D	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{V}, 1.5 \text{V}$	25		0.25	0.3	
On-Resistance Flatness	KFLAT(ON)		Full		0.45		
Dynamic							
T O T	t _{ON}		25		40	55	ns
Turn-On-Time		$V_{\rm CC} = 2.5 V,$	Full			70	
Turn-Off-Time	t _{OFF}	$V_{\rm NO} \text{ or } V_{\rm NC} = 1.8 \text{ V},$ See Fig. 1	25		30	40	
			Full			55	
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	33	39	1
Make-Before-Break	t _{MBB}	See Fig. 4	25	1	9	13	
Charge Injection ⁽³⁾	Q	$C_{L} - 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V, \text{ See Fig 2}$	25		20		pC
Supply	• •						
Positive Supply Current	1 _{CC}	$V_{CC} = 2.75 V$, $V_{IN} = 0V$ or V_{CC} , All Channels ON or OFF	Full		0.5	1	μΑ
Logic Input		_					
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH level	Full	1.8			
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW level	Full			0.6	v
Input HIGH Current	I _{INH}	$V_{\rm IN} = 2.0$ V, all others = 0.8V	Full	-1		1	
Input LOW Current	I _{INL}	$V_{\rm IN} = 0.8$ V, all others = 2.0V	Full	-1		1	μΑ

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.5V, V_{INL} = 0.6V)$

Parameter	Symbol	Symbol Conditions		Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch				-			
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
On-Resistance	Dava	$V_{CC} = 1.8V, I_{COM} = -2mA,$	25		2.8	4	
	KON	$V_{\rm NO}$ or $V_{\rm NC} = 1.5 V$	Full			5]
On-Resistance Match	APour		25		0.44	0.6	
Between Channels ⁽⁴⁾	ARON	$V_{CC} = 1.8V, I_{COM} = -2mA,$	Full		0.7		
On Pasistance Elatness		$V_{\rm NO} \text{ or } V_{\rm NC} = 0.6 \text{V}, 1.5 \text{V}$	25		0.5	0.6]
OII-RESIStance Flatness	KFLAT(ON)		Full		0.9		
Dynamic							
			25		65	70	
Turn-On-Time	t _{ON}	$V_{CC} = 1.8V,$	Full			95	ns
Turn-Off-Time	t _{OFF}	$V_{\text{NO}} \text{ or } V_{\text{NC}} = 1.5 \text{ V},$ See Fig 1	25		40	55	
			Full			70	1
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	60	72	1
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		10		pC
Supply	·	·	·	•	•		
Positive Supply Current	1 _{CC}	$V_{CC} = 2.0, V_{IN} = 0V \text{ or } V_{CC},$ All Channels ON or OFF	Full		0.5	1	μA
Logic Input			·				
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH level	Full	1.8			
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW level	Full			0.6	
Input HIGH Current	I _{INH}	$V_{\rm IN} = 1.5$ V, all others = 0.8V	Full	-1		1	
Input LOW Current	I _{INL}	$V_{IN} = 0.8V$, all others = 1.5V	Full	-1		1	μΑ

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 6. Channel-Off Capacitance

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Packaging Mechanical: 6-Pin SOT-23(T)

Ordering Information

Ordering Code	Package Code	Package Description	Top Marking
PI5A3159TX	Т	6-pin SOT-23	ZL
PI5A3159TEX	Т	6-pin SOT-23	ZL

Notes:

1. This product has always shipped as only a lead free product, but since it was introduced prior to Pericom's strategy of adding an E to all Green/ Lead free parts many customers order it without the E suffix. Please migrate new designs and qualification to include the E suffix. Pericom at this point in time will continue to offer devices marked both ways, but may at a later date eliminate the non-E part number.

2. Thermal Characteristics can be found on the world wide web at www.pericom.com/packaging/

3. Number of transistors : 753

4. X = Tape and reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com