SGM2014M

GaAs N-channel Dual Gate MES FET

Description

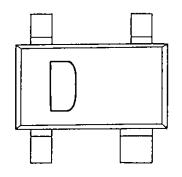
The SGM2014M is an N-channel dual gate GaAs MES FET for UHF band low-noise amplification. This FET is suitable for a wide range of applications including TV tuners, cellular radios, and DBS IF amplifiers.

Features

- Low voltage operation
- Low noise: NF=1.5dB (typ.) at 900MHz
- High gain: Ga=18dB (typ.) at 900MHz
- Low cross-modulation
- High stability
- Built-in gate-protection diode
- Standard SOT-143 package

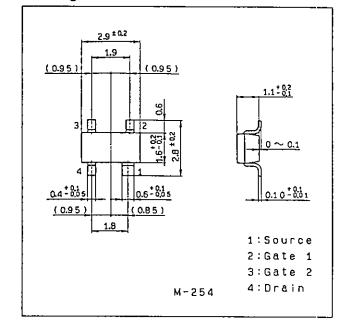
Application

UHF band amplifier, mixer and oscillator


Structure

GaAs N-channel dual-gate metal semiconductor field-effect transistor

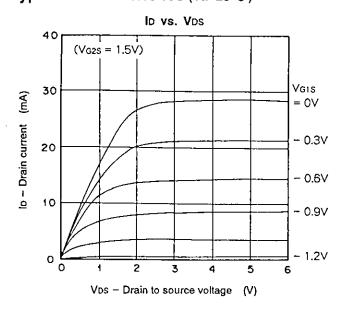
Absolute Maximum Ratings (Ta=25°C)

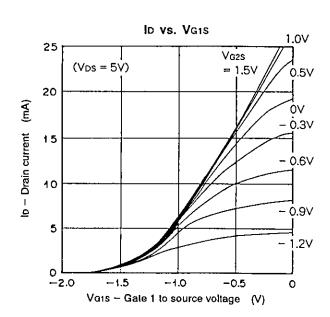

 Drain to source voltage 	Vosx	12	٧
 Gate 1 to source voltage 	Vg1s	-5	٧
 Gate 2 to source voltage 	Vg2s	-5	٧
 Drain current 	lo	55	mA
 Channel temperature 	Tch	150	$^{\circ}$
 Storage temperature 	Tstg	-55 to +150	°C
Allowable power dissipation	Po	150	mW

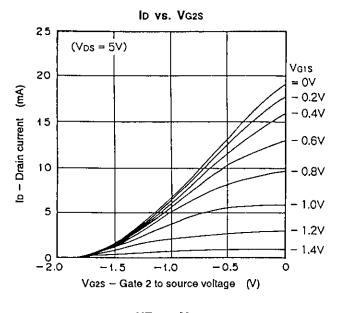
Marking

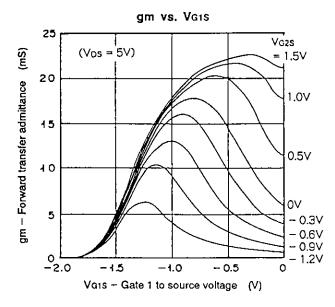
Package Outline

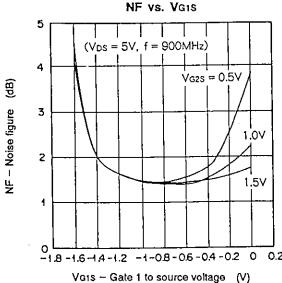
Unit: mm

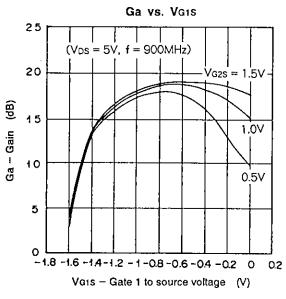

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

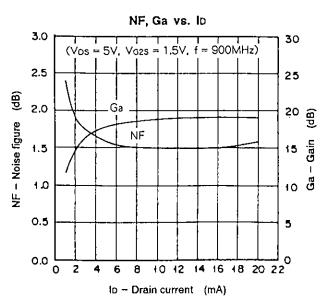

Electrical Characteristics

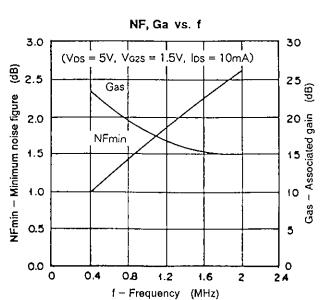

(Ta=25°C)

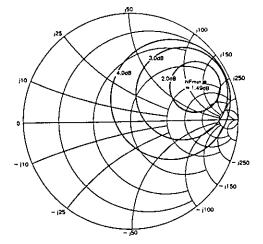

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain cut-off current	losx	VDS=12V VG1S=-4V VG2S=0V	50			μА
Gate 1 to source current	laiss	Vg1s=-4.5V Vg2s=0V VDs=0V			-8	μА
Gate 2 to source current	lg2SS	Vg2s=-4.5V Vg1s=0V Vps=0V			-8	μА
Drain saturation current	loss	Vps=5V Vg1s=0V Vg2s=0V	8		28	mA
Gate 1 to source cut-off voltage	Vg1s (OFF)	Vps=5V lp=100 μA Vg2s=0V			-2.5	٧
Gate 2 to source cut-off voltage	V _{G2} s (OFF)	V _{DS} =5V l _D =100 μA V _{G1} s=0V		-	-2.5	V
Forward transfer admittance	gm	Vps=5V lp=10mA Vg2s=1.5V f=1kHz	13	17		mS
Input capacitance	Ciss	Vps=5V Ip=10mA		0.9	2	pF
Feedback capacitance	Crss	V _{G2} s=1.5V f=1MHz		25	50	fF
Noise figure	NF	Vos=5V Io=10mA		1.5	2.5	dB
Associated gain	Ga	V _{G2} s=1.5V f=900MHz	15	18	•••	dB

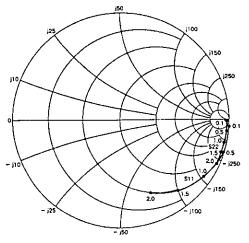

Typical Characteristics (Ta=25 $^{\circ}$ C)

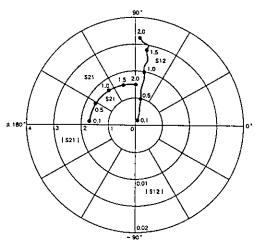









Noise Figure Characteristics (Vps=5V, Vg2s=1.5V, lp=10mA)


at 900MHz

f	Ga	NFmin	NF50	Rn	T	(S)
(MHz	(dB)	(dB)	(dB)	(Ω)	MAG	
600 700 800 900 1000	20.3 19.4 18.7	1.18 1.28 1.38 1.49 1.59	3.32 3.31 3.30 3.30 3.30	53.4 52.7 52.0 51.2 50.5	0.83 0.81 0.78 0.76 0.74	15.7° 18.1° 20.4° 22.7° 25.0°

S-parameters vs. Frequency Characteristics (Vps=5V, Vg2s=1.5V, lp=10mA)

f	S	11	S	S ₂₁		S ₁₂		S22	
(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
100	1.000	−3.4°	1.706	175.5°	.001	71.9°	.979	-1.2°	
200	1.000	−6.8°	1.709	170.3°	.002	88.6°	.979	−2.5°	
300	.996	10.4°	1.695	165.7°	.003	75.7°	.978	−3.7°	
400	.998	-13.8°	1.702	161.1°	.004	86.4°	.979	-4.9°	
500	.987	_17.3°	1.691	156.1°	.005	79.1°	.980	-6.1°	
600	.977	–20.8°	1.686	151.4°	.006	81.1°	.978	_7.4°	
700	.967	-24.2°	1.678	146.8°	.007	81.8°	.975	–8.5°	
800	.953	<i>–</i> 27.6°	1.664	141.9°	.008	80.2°	.974	-9.8°	
900	.936	_30.9°	1.654	137.6°	.009	79.8°	.971	-11.0°	
1000	.923	-34.5°	1.643	132.9°	.010	80.6°	.971	-12.3°	
1100	.906	-37.9°	1.622	127.9°	.011	80.9°	.968	-13.8°	
1200	.891	-41.2°	1.619	123.8°	.011	82.5°	.972	-14.5°	
1300	.872	-44.6°	1.607	119.4°	.012	79.4°	.971	–15.6°	
1400	.855	−48.0°	1.596	114.9°	.013	79.7°	.971	-16.9°	
1500	.834	_51.1°	1.583	110.4°	.014	81.6°	.971	_18.1°	
1600	.814	-54.5°	1.567	106.0°	.013	81.4°	.967	_19.2°	
1700	.792	-57.6°	1.556	101.6°	.014	80.0°	.967	-20.3°	
1800	.771	-60.8°	1.541	97.2°	.015	80.1°	.966	_21.6°	
1900	.752	-64.0°	1.528	93.1°	.015	82.3°	.966	-22.9°	
2000	.731	-67.3°	1.517	88.7°	.016	87.6°	.968	-24.1°	