Outline

This IC extends the series of ICs for video/audio signal switching, with a 2-input 1-output single video switch, video signal/chroma signal 75Ω driver, and Y/C mixing circuit in one small package (SOT-26).

Features

(1) Low power consumption achieved.
(2) Low power supply voltage realized.
(3) Frequency bandwidth without 75Ω driver: 10 MHz with 75Ω driver: 7 MHz
(4) Cross talk 70 dB When 4.43 MHz
(5) With SAG measures pin (75Ω driver and Y / C mix driver)

Package

SOT-26A (with 75Ω driver)
SOT-26B (without 75Ω driver)

Applications

(1) TV
(2) VTR
(3) Video camera
(4) Digital still camera
(5) Other visual equipment

Line-up

Functions	Model Name	Input	Output	Clamp	6dB amp	75Ω driver	SAG measures pin	Power supply voltage
Switch	MM1501	2	1	\times	\times	\times	\times	4.5~13.0V
	MM1502			\times	\bigcirc	\times	\times	$4.5 \sim 13.0 \mathrm{~V}$
	MM1503			\bigcirc	\times	\times	\times	4.5~13.0V
	MM1504			\bigcirc	\bigcirc	\times	\times	4.5~13.0V
	MM1505			\times	\times	\bigcirc	\times	4.5~13.0V
	MM1506			\times	\bigcirc	\bigcirc	\times	4.5~13.0V
	MM1507			\bigcirc	\times	\bigcirc	\times	4.5~13.0V
	MM1508			\bigcirc	\bigcirc	\bigcirc	\times	$4.5 \sim 13.0 \mathrm{~V}$
Driver	MM1509	1	1	\times	\bigcirc	\bigcirc	\bigcirc	4.5~13.0V
	MM1510			\bigcirc	\bigcirc	\bigcirc	\bigcirc	$4.5 \sim 13.0 \mathrm{~V}$
Y/C mix	MM1511	1	1	$0 / \times$	\times	\times	\times	4.5~13.0V
	MM1512			\bigcirc / \times	\bigcirc	\bigcirc	\bigcirc	$4.5 \sim 13.0 \mathrm{~V}$

Block Diagram

MM1501

MM1502

MM1503

MM1505

MM1506

MM1507

MM1508

MM1509

MM1512

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Rating	Unit
Storage temperature	TsTG	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature		Topr	$-30 \sim+75$
Power supply voltage		Vcc	15
Allowable loss	When alone	Pd	200

Recommended Operating Conditions

Item	Symbol	Rating	Unit
Power supply voltage	Vcc	$4.5 \sim 13$	V

Electrical Characteristics (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$)
MM1501

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		3.7	4.8	mA
Input pin voltage	VIN	No-signal, no-load	2.70	2.90	3.10	V
Output pin voltage	Vout	No-signal, no-load		2.15		V
Voltage gain	Gv	Refer to measurement procedures	-0.5	0	+0.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain \quad Vcc=9V	DG	Refer to measurement procedures	-3	0	+3	\%
Differential phase $\mathrm{Vcc}=9 \mathrm{~V}$	DP	Refer to measurement procedures	-3	0	+3	deg
Total harmonic distortion ratio	THD	Refer to measurement procedures		0.03	0.3	\%
Output dynamic range	Vd	Refer to measurement procedures	3.5	3.8		V
Output offset voltage	Voff	Refer to measurement procedures			± 15	mV
Cross talk	$\mathrm{C}_{\text {T }}$	Refer to measurement procedures		-70	-60	dB
SW input voltage H	VIH	Refer to measurement procedures	2.1			V
SW input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zi			15		$\mathrm{k} \Omega$
Output impedance	Zo			75		Ω

MM1502

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		4.7	6.1	mA
Input pin voltage	Vin	No-signal, no-load	1.70	1.90	2.10	V
Output pin voltage	Vout	No-signal, no-load		2.10		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain $\mathrm{Vcc}^{\text {c }}$ 9V	DG	Refer to measurement procedures	-3	0	+3	\%
Differential phase Vcc=9V	DP	Refer to measurement procedures	-3	0	+3	deg
Total harmonic distortion ratio	THD	Refer to measurement procedures		0.03	0.3	\%
Output dynamic range	VD	Refer to measurement procedures	3.5	3.8		V
Output offset voltage	Voff	Refer to measurement procedures			± 30	mV
Cross talk	$\mathrm{C}_{\text {T }}$	Refer to measurement procedures		-70	-60	dB
SW input voltage H	VIH	Refer to measurement procedures	2.1			V
Sw input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zi			15		$\mathrm{k} \Omega$
Output impedance	Zo			12		Ω

MM1503

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		3.3	4.3	mA
Input pin voltage	VIN	No-signal, no-load	1.80	2.00	2.20	V
Output pin voltage	Vout	No-signal, no-load		1.25		V
Voltage gain	Gv	Refer to measurement procedures	-0.5	0	+0.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Total harmonic distortion ratio	THD	Refer to measurement procedures		0.03	0.3	$\%$
Output dynamic range	VD	Refer to measurement procedures	2.6	2.9		V
Output offset voltage	VofF	Refer to measurement procedures			± 15	mV
Cross talk	C_{T}	Refer to measurement procedures		-70	-60	dB
SW input voltage H	VIH	Refer to measurement procedures	2.1			V
SW input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zo			75		Ω

MM1504

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		4.4	5.7	mA
Input pin voltage	VIN	No-signal, no-load	1.20	1.40	1.60	V
Output pin voltage	Vout	No-signal, no-load		1.25		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Total harmonic distortion ratio	THD	Refer to measurement procedures		0.03	0.3	$\%$
Output dynamic range	VD	Refer to measurement procedures	2.6	2.9		V
Output offset voltage	Voff	Refer to measurement procedures			± 30	mV
Cross talk	CT	Refer to measurement procedures		-70	-60	dB
SW input voltage H	$\mathrm{VIH}_{\text {IH }}$	Refer to measurement procedures	2.1			V
SW input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zo			12		Ω

MM1505

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		6.5	8.5	mA
Input pin voltage	Vin	No-signal, no-load	2.35	2.55	2.75	V
Output pin voltage	Vout	No-signal, no-load		2.55		V
Voltage gain	Gv	Refer to measurement procedures	-0.5	0.0	0.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain $\quad \mathrm{Vcc}=9 \mathrm{~V}$	DG	Refer to measurement procedures	-3	0	+3	\%
Differential phase $\mathrm{V}_{\mathrm{cc}=9 \mathrm{~V}}$	DP	Refer to measurement procedures	-3	0	+3	deg
Output dynamic range	V_{D}	Refer to measurement procedures	2.6	3.0		\checkmark
Output offset voltage	Voff	Refer to measurement procedures			± 15	mV
Cross talk	$\mathrm{C}_{\text {T }}$	Refer to measurement procedures		-70	-60	dB
SW input voltage H	Vif	Refer to measurement procedures	2.1			V
SW input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zi			15		$\mathrm{k} \Omega$

MM1506

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		6.8	8.8	mA
Input pin voltage	Vin	No-signal, no-load	1.75	1.95	2.15	V
Output pin voltage	Vout	No-signal, no-load		2.35		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain \quad Vcc=9V	DG	Refer to measurement procedures	-3	0	+3	\%
Differential phase Vcc=9V	DP	Refer to measurement procedures	-3	0	+3	deg
Output dynamic range	V	Refer to measurement procedures	3.0	3.3		V
Output offset voltage	Voff	Refer to measurement procedures			± 30	mV
Cross talk	$\mathrm{C}_{\text {T }}$	Refer to measurement procedures		-70	-60	dB
SW input voltage H	VIH	Refer to measurement procedures	2.1			V
SW input voltage L	VIL	Refer to measurement procedures			0.7	V
Input impedance	Zi			15		$\mathrm{k} \Omega$

MM1507

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		6.4	8.3	mA
Input pin voltage	VIn	No-signal, no-load	1.15	1.35	1.55	V
Output pin voltage	Vout	No-signal, no-load		1.35		V
Voltage gain	Gv	Refer to measurement procedures	-0.5	0	+0.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Output dynamic range	VD	Refer to measurement procedures	2.6	2.9		V
Output offset voltage	VoFF^{2}	Refer to measurement procedures			± 15	mV
Cross talk	C_{T}	Refer to measurement procedures		-70	-60	dB
SW input voltage H	$\mathrm{V}_{\text {IH }}$	Refer to measurement procedures	2.1			V
SW input voltage L	$\mathrm{V}_{\text {IL }}$	Refer to measurement procedures			0.7	V

MM1508

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		6.8	8.8	mA
Input pin voltage	VIN 2	No-signal, no-load	1.15	1.35	1.55	V
Output pin voltage	VouT	No-signal, no-load		1.30		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Output dynamic range	V_{D}	Refer to measurement procedures	2.6	3.0		V
Output offset voltage	VoFF^{2}	Refer to measurement procedures			± 30	mV
Cross talk	C_{T}	Refer to measurement procedures		-70	-60	dB
SW input voltage H	V_{IH}	Refer to measurement procedures	2.1			V
SW input voltage L	V_{IL}	Refer to measurement procedures			0.7	V

MM1509

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc1	Refer to measurement procedures		6.3	8.2	mA
Current consumption for PS	Icc 2	Refer to measurement procedures		20	30	$\mu \mathrm{~A}$
PS input voltage L	VPSL	Refer to measurement procedures			0.3	V
PS input voltage H	VPSH	Refer to measurement procedures	1.8			V
Input pin voltage	VIN	No-signal, no-load	1.75	1.95	2.15	V
Output pin voltage	Vout	No-signal, no-load		2.35		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	Vcc=9V	DG	Refer to measurement procedures	-3	0	+3
Differential phase	Vcc=9V	DP	Refer to measurement procedures	-3	0	+3
Output dynamic range	VD	Refer to measurement procedures	2.9	3.2		Veg
Input impedance		Zi			15	
$\mathrm{k} \Omega$						

MM1510

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc1	Refer to measurement procedures		6.4	8.3	mA
Current consumption for PS	Icc 2	Refer to measurement procedures		20	30	$\mu \mathrm{~A}$
PS input voltage L	VPSL	Refer to measurement procedures			0.3	V
PS input voltage H	VPSH	Refer to measurement procedures	1.8			V
Input pin voltage	VIN	No-signal, no-load	1.15	1.35	1.55	V
Output pin voltage	Vout	No-signal, no-load		1.15		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Output dynamic range	VD	Refer to measurement procedures	2.6	3.0		V

MM1511

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		4.4	5.7	mA
Y input pin voltage	Vyin	No-signal, no-load	2.00	2.20	2.40	V
C input pin voltage	VcIN	No-signal, no-load	1.85	2.05	2.25	V
Output pin voltage	Vout	No-signal, no-load		1.15		V
Voltage gain	Gv	Refer to measurement procedures	-0.5	0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+0.5	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Y output dynamic range	VDY	Refer to measurement procedures	2.6	2.9	V	
C output dynamic range	VDC	Refer to measurement procedures	2.0			V
C input impedance	Zi			15		$\mathrm{k} \Omega$
Output impedance	Zo			25		Ω

MM1512

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Consumption current	Icc	Refer to measurement procedures		6.9	9.0	mA
Y input pin voltage	VYIN	No-signal, no-load	1.95	2.15	2.35	V
C input pin voltage	VCIN	No-signal, no-load	1.80	2.00	2.20	V
Output pin voltage	Vout	No-signal, no-load		1.10		V
Voltage gain	Gv	Refer to measurement procedures	5.5	6.0	6.5	dB
Frequency characteristic	fc	Refer to measurement procedures	-1	0	+1	dB
Differential gain	DG	Refer to measurement procedures	-3	0	+3	$\%$
Differential phase	DP	Refer to measurement procedures	-3	0	+3	deg
Y output dynamic range	VDY	Refer to measurement procedures	2.6	2.9		V
C output dynamic range	VDC	Refer to measurement procedures	2.0			V
C input impedance	Zi			15		$\mathrm{k} \Omega$

Measurement Procedures

MM1501~MM1508

- Switch Status

Item	Symbol	Switch status		
		S1	S2	S3
Consumption current	Icc	2	2	2
Voltage gain	Gv	1	2	2
		2	1	1
Frequency characteristic	fc	1	2	2
		2	1	1
Differential gain	DG	1	2	2
		2	1	1
Differential phase	DP	1	2	2
		2	1	1

Item	Symbol	Switch status		
		S1	S2	S3
Total harmonic	THD	1	2	2
distortion ratio	THD	2	1	1
Output dynamic range	VD	1	2	2
		2	1	1
Output offset voltage	Voff	2	2	2
		2	2	1
Cross talk	$\mathrm{C}_{\text {T }}$	1	2	1
		2	1	2
SW input voltage H	VIH	2	2	1
SW input voltage L	VIL			

-Measurement Procedures (MM1501~MM1504)

Consumption current	Icc	Connect a DC ammeter to Vcc pin and measure. Hereafter, short the ammeter to use.
Voltage gain	Gv	Input a 2.0VP-P (1.0VP-P for MM1502 and MM1504), 100 kHz sine wave to SG1. If TP1 voltage is V1 and TP3 voltage is V2, find Gv using the following formula: $\mathrm{Gv}=20 \mathrm{LOG}(\mathrm{~V} 2 / \mathrm{V} 1) \mathrm{dB}$
Frequency characteristic	fc	In the above Gv measurement, if TP3 voltage at 10 MHz is V3, find fc as follows: $\mathrm{fc}=20 \mathrm{LOG}(\mathrm{~V} 3 / \mathrm{V} 2) \mathrm{dB}$
Differential gain	DG	Input a 2.0VP-P (1.0VP-P for MM1502 and MM1504) staircase to SG1 and measure differential gain at TP3. $\mathrm{APL}=10 \sim 90 \%$
Differential phase	DP	The same as for DG, but measure differential phase.
Total harmonic distortion ratio	THD	Input a $2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (1.25VP-P for MM1502, MM1504), 1 kHz sine wave to SG1, connect a distortion factor meter to TP3 and measure.
Output dynamic range	V	Input a 100 kHz sine wave to SG1. Change the amplitude of the sine wave, and measure V_{D}, the maximum amplitude under THD 1%, at TP3.
Output offset voltage	Voff	Measure the DC voltage difference of each switch status at TP2.
Cross talk	Ст	$\mathrm{VC} 1=2.1 \mathrm{~V}$ and $\mathrm{VC} 2=0.7 \mathrm{~V}$. Input a 2.0 V P-p, 4.43 MHz sine wave to SG1, and operate SW3. If TP3 voltage when there is an output signal on the OUT pin is V4, and when there is no signal TP3 voltage is V 5 , then find C_{T} by the following formula: $\mathrm{C}_{\mathrm{T}}=20 \mathrm{LOG}(\mathrm{~V} 5 / \mathrm{V} 4) \mathrm{dB}$
SW input voltage	VI	Impress an optional DC voltage on TP5 and TP6. Gradually increase from $\mathrm{VC} 1=0 \mathrm{~V}$. When TP6 voltage is output on TP2, TP4 voltage is V_{IH}. Gradually lower from $\mathrm{VC1}=\mathrm{Vcc}$, and when TP5 voltage is output on TP2, TP4 voltage is $\mathrm{V}_{\text {II }}$.

- Measurement Procedures (MM1505 ~ MM1508)

Consumption current	Icc	Connect a DC ammeter to Vcc pin and measure. Hereafter, short the ammeter to use.
Voltage gain	Gv	Input a 2.0VP-P(1.0VP-P for MM1506 and MM1508), 100kHz sine wave to SG1. If TP1 voltage is V1 and TP3 voltage is V2, find GV using the following formula: Gv = 20LOG (V2/V1) dB
Frequency characteristic	fc	In the above GV measurement, if TP3 voltage at 7MHz is V3, find fc as follows: \quad fc $=20 \mathrm{LOG}$ (V3/V2) dB
Differential gain	DG	Input a 2.0VP-P (1.0VP-P for MM1506 and MM1508) staircase to SG1 and measure differential gain at TP3. APL = 10 ~ 90\%
Differential phase	DP	The same as for DG, but measure differential phase.
Output dynamic range	VD	Input a 100kHz sine wave to SG1. Change the amplitude of the sine wave, and measure VD, the maximum amplitude under THD 1\%, at TP3.
Output offset voltage	Voff	Measure the DC voltage difference of each switch status at TP2.
Cross talk	CT	VC1 = 2.1V and VC2 = 0.7V. Input a 2.0VP-P, 4.43MHz sine wave to SG1, and operate SW3. IF TP3 voltage when there is an output signal on the OUT pin is V4, and when there is no signal TP3 voltage is V5, then find CT by the following formula: CT = 20LOG (V5/V4) dB
SW input voltage	VI	Impress an optional DC voltage on TP6 and TP7. Gradually increase from VC1 = 0V. When TP7 voltage is output on TP2, TP5 voltage is VIH. Gradually lower from VC1 = Vcc, and when TP6 voltage is output on TP2, TP5 voltage is VIL.

MM1509 ~ MM1510

- Switch Status

Item	Symbol	Switch status	
		S1	S2
Consumption current	Icc1	2	1
Consumption current for PS	Icc2	2	3
PS input voltage L	V_{IL}	2	2
PS input voltage H	V_{IH}	2	
Voltage gain	GV	1	1

Item	Symbol	Switch status	
		S1	S2
Frequency characteristic	fc	1	1
Differential gain	DG	1	1
Differential phase	DP	1	1
Output dynamic range	VD	1	1

- Measurement Procedures

Consumption current	Icc1	Connect a DC ammeter to the Vcc pin and measure.
Consumption current for PS	Icc2	Connect a DC ammeter to the Vcc pin and measure.
PS input voltage	VI	Connect a DC ammeter to the Vcc pin. Gradually lower from VC1 = Vcc. VC1 voltage when consumption current is reduced from Icci to 110% of Icc2 is $\mathrm{V}_{\text {IL }}$. Gradually raise from VC1 $=0 \mathrm{~V}$. VC1 voltage when consumption current increases from Icc2 to 90% of Icc1 is V_{IH}. From here on, short the ammeter when using it.
Voltage gain	Gv	Input a $1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, 100 \mathrm{kHz} \text { sine wave to } \mathrm{SG} 1 \text {. If TP1 voltage is } \mathrm{V} 1 \text { and }}$ TP2 voltage is V2, find Gv by the following formula: $\mathrm{Gv}=20 \mathrm{LOG}(\mathrm{V} 2 / \mathrm{V} 1) \mathrm{dB}$
Frequency characteristic	fc	In the above Gv measurement, if TP2 voltage at 7 MHz is V , find fc by the following formula. $\mathrm{fc}=20 \mathrm{LOG}(\mathrm{~V} 3 / \mathrm{V} 2) \mathrm{dB}$
Differential gain	DG	Input a $1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ staircase to SG 1 and measure differential gain at TP2. $\text { APL = } 10 \sim 90 \%$
Differential phase	DP	The same as for DG, but measure differential phase.
Output dynamic range	V ${ }_{\text {d }}$	Input a 100 kHz sine wave to SG1. Measure DR, the maximum amplitude under THD 1%, at TP2.

MM1511 ~ MM1512

- Switch Status

Item	Symbol	Switch status	
		S1	S2
Consumption current	Icc	2	2
Voltage gain	Gv	1	2
		2	1
Frequency characteristic	fc	1	2
		2	1

Item	Symbol	Switch status	
		S1	S2
Differential gain	DG	3	1
Differential phase	DP	3	1
Y output dynamic range	VDY	2	1
C output dynamic range	VDC	3	1

- Measurement Procedures

Consumption current	Icc1	Connect a DC ammeter to the Vcc pin and measure. Hereafter, short the ammeter to use.
Voltage gain	Gv	Input a 2.0VP-P (1.0VP-Pf for MM1512), 100kHz sine wave to SG1. If TP1 voltage is V1 and TP2 voltage is V2, find Gv by the following formula: Gv = 20LOG (V2/V1) dB
Frequency characteristic	fc	In the above Gv measurement, if TP2 voltage at 10MHz (7MHz for MM1512) is V3, find fc by the following formula. fc = 20LOG (V3/V2) dB
Differential gain	DG	Input a 2.0VP-P (1.0VP-P for MM1512) to SG1, input a chroma signal to SG2, and measure differential gain at TP2. APL = 10 ~ 90\%
Differential phase	DP	The same as for DG, but measure differential phase. Y output dynamic range VDYInput a 100kHz sine wave to SG1. Measure VDV, the maximum amplitude under THD 1\%, at TP2.
C output dynamic range	VDC	Input an APL 50\% luminance signal to SG1 and input a chroma signal to SG2. Change the chroma signal amplitude and measure VDc, the maximum amplitude where there is no waveform distortion at TP2.

MM1501

MM1503

MM1504

MM1507

- MM1506

MM1508

- MM1509

MM1510

MM1511

MM1512

