PRELIMINARY DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8172TK$

SMALL PACKAGE FREQUENCY UP-CONVERTER IC

DESCRIPTION

The μ PC8172TK is a silicon monolithic integrated circuit designed as frequency up-converter for cellular telephone transmitter stage.

This TK suffix IC which is smaller package than conventional TB suffix IC contribute to reduce your system size.

This IC is manufactured using our 30 GHz f_{max} UHS0 (<u>U</u>ltra <u>High Speed Process</u>) silicon bipolar process.

FEATURES

High output frequency : fRFout = 0.8 to 2.5 GHz
 Circuit current : Icc = 9.0 mA TYP.

· High-density surface mounting : 6-pin lead-less minimold package

Supply voltage : Vcc = 2.7 to 3.3 V

APPLICAIONS

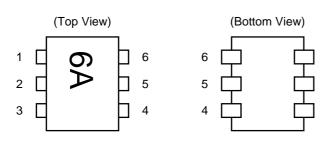
PCS1900M

• 2.4 GHz band transmitter/receiver system (wireless LAN etc.)

• RF module etc.

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μ PC8172TK-E2	6-pin lead-less minimold (1511)	6A	Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: µPC8172TK

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

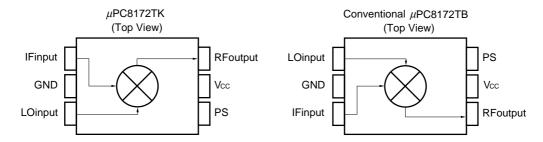
PIN CONNECTIONS

Pin No.	Pin Name
1	IFinput
2	GND
3	LOinput
4	PS
5	Vcc
6	RFoutput

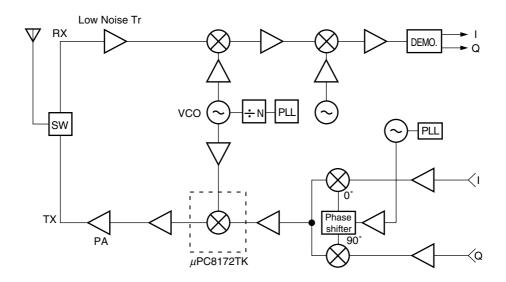
Caution Pin arrangement differs from the conventional 6-pin super mini-mold type (µPC8172TB).

PRODUCT LINE-UP

5	5 1	Icc	frefout (GHz)	CG (dB)			
Part No.	Package	(mA)		@RF0.9 (GHz) Note	@RF1.9 (GHz)	@RF2.4 (GHz)	
μPC8172TK	6-pin lead-less minimold	9.0	0.8 to 2.5	9.5	8.5	8.0	
μPC8106TB	6-pin super minimold	9.0	0.4 to 2.0	9.0	7.0	ı	
μPC8109TB	(1511)	5.0	0.4 to 2.0	6.0	4.0	-	
μPC8163TB		16.5	0.8 to 2.0	9.0	5.5	-	
μPC8172TB		9.0	0.8 to 2.5	9.5	8.5	8.0	
μPC8187TB		15.0	0.8 to 2.5	11.0	11.0	10.0	


Dog No.		Po (sat) (dBm)		OIP ₃ (dBm)			
Part No.	@RF0.9 (GHz) Note	@RF1.9 (GHz)	@RF2.4 (GHz)	@RF0.9 (GHz) Note	@RF1.9 (GHz)	@RF2.4 (GHz)	
μPC8172TK	+0.5	0	-0.5	+7.5	+6.0	+4.0	
μPC8106TB	-2.0	-4.0	ı	+5.5	+2.0	ı	
μPC8109TB	-5.5	-7.5	_	+1.5	-1.0	-	
μPC8163TB	+0.5	-2.0	-	+9.5	+6.0	-	
μPC8172TB	+0.5	0	-0.5	+7.5	+6.0	+4.0	
μPC8187TB	+4.0	+2.5	+1.0	+10.0	+10.0	+8.5	

Note fracut = 0.83 GHz@ μ PC8163TB, μ PC8187TB


Remarks 1. Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

2. To know the associated product, please refer to each latest data sheet.

BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

Caution To know the associated products, please refer to each latest data sheet.

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) Note	Function and Applications	Internal Equivalent Circuit
1	IFinput	-	1.3	This pin is IF input to double balanced mixer (DBM). The input is designed as high impedance. The circuit contributes to suppress spurious signal. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution. For above reason, double balanced mixer is adopted.	©
2	GND	GND	-	GND pin. Ground pattern on the board should be formed as wide as possible. Track Length should be kept as short as possible to minimize ground impedance.	
3	LOinput	-	2.4	Local input pin. Recommendable input level is –10 to 0 dBm.	
5	Vcc	2.7 to 3.3	-	Supply voltage pin.	
6	RFoutput	Same bias as Vcc through external inductor	=	This pin is RF output from DBM. This pin is designed as open collector. Due to the high impedance output, this pin should be externally equipped with LC matching circuit to next stage.	
4	PS	Vcc/GND	-	Power save control pin. Bias controls operation as follows. Pin bias Control Vcc Operation GND Power Save	Vcc 5 GND 2

Note Each pin voltage is measured with Vcc = Vps = VRFout = 3.0 V

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	3.6	V
PS pin input Voltage	VPS	TA = +25°C	3.6	V
Power Dissipation of Package	PD	$T_A = +85^{\circ}C$ Note	203	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	T _{stg}		-55 to +150	°C
Input Power	Pin		+10	dBm

Note Mounted on double-side copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply Voltage	Vcc	2.7	3.0	3.3	V	Same voltage should be applied to pin 5 and pin 6.
Operating Ambient Temperature	TA	-40	+25	+85	°C	
Local Input Level	PLOin	-10	-5	0	dBm	Zs = 50Ω (without matching)
RF Output Frequency	f _{RFout}	0.8	_	2.5	GHz	With external matching circuit
IF Input Frequency	fıFin	50	_	600	MHz	

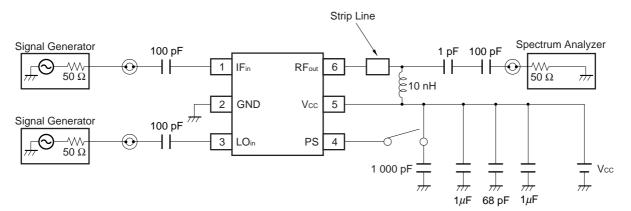
ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = V_{RFout} = 3.0 V, f_{IFin} = 240 MHz, P_{LOin} = -5 dBm, and V_{PS} \geq 2.7 V, unless otherwise specified)

Parameter	Symbol	Test Co	MIN.	TYP.	MAX.	Unit	
Circuit Current	Icc	No signal		5.5	9.0	13	mA
Circuit Current In Power Save Mode	Icc (PS)	V _{PS} = 0 V	_	_	2.0	μΑ	
Conversion Gain	CG1	frefout = 0.9 GHz Note1		6.5	9.5	12.5	dB
	CG2	frefout = 1.9 GHz Note2	P _{IFin} = -30 dBm f _{IFin} = 240 MHz	5.5	8.5	11.5	dB
	CG3	frefout = 2.4 GHz Note2		5.0	8.0	11.0	dB
Saturated RF output	Po (sat) 1	frefout = 0.9 GHz Note1		-2.5	+0.5	-	dBm
Power	Po (sat) 2	frefout = 1.9 GHz Note2	P _{IFin} = 0 dBm f _{IFin} = 240 MHz	-3.5	0	_	dBm
	Po (sat) 3	frefout = 2.4 GHz Note2			-0.5	_	dBm

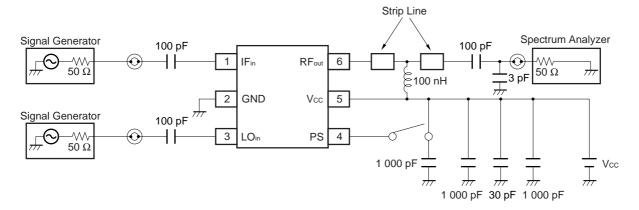
Notes 1. frFout < fLOin @ frFout = 0.9 GHz

2. $f_{LOin} < f_{RFout} @ f_{RFout} = 1.9 GHz/2.4 GHz$

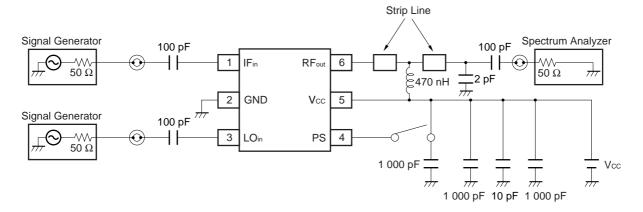
OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY


(TA = +25°C, Vcc = VRFout = 3.0 V, PLoin = -5 dBm, and VPS ≥ 2.7 V, unless otherwise specified)

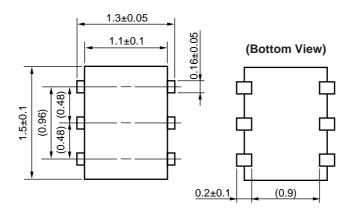
Parameter		Symbol	Test C	onditions	Data	Unit
Out 3rd Order Distortion		OIP₃1	frefout = 0.9 GHz Note1		+7.5	dBm
Intercept Point		OIP ₃ 2	frefout = 1.9 GHz Note2	fiFin1 = 240 MHz fiFin2 = 241 MHz	+6.0	dBm
		OIP₃3	frefout = 2.4 GHz Note2	111 III - 241 IVII IZ	+4.0	dBm
Input 3rd Order Distortion Intercept		IIP ₃ 1	frefout = 0.9 GHz Note1		-2.0	dBm
Point	Point		frefout = 1.9 GHz Note2	fiFin1 = 240 MHz fiFin2 = 241 MHz	-2.5	dBm
		IIP₃3	frefout = 2.4 GHz Note2	111 III - 241 IVII IZ	-4.0	dBm
SSB Noize Figure		SSB·NF1	frefout = 0.9 GHz, fifin = 240 MHz		9.5	dB
		SSB·NF2	frefout = 1.9 GHz, fifin = 240 MHz		10.4	dB
		SSB·NF3	frefout = 2.4 GHz, fifin = 240 MHz		10.6	dB
Power Save Response Time	Rise time	TPS (rise)	$V_{PS}: GND \rightarrow V_{CC}$		1.0	μs
	Fall time	TPS (fall)	$V_{PS}:V_{CC}\rightarrow GND$		1.5	μs

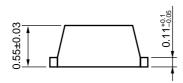

Notes1. frefout < fLOin @ frefout = 0.9 GHz

2. fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz


TEST CIRCUIT 1 (freout = 0.9 GHz)

TEST CIRCUIT 2 (freout = 1.9 GHz)




TEST CIRCUIT 3 (freout = 2.4 GHz)

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511) (UNIT: mm)

Remark (): Reference value

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
- (3) Connect a bypass capacitor (example : 1 000 pF) to the Vcc pin.
- (4) Connect a matching circuit to the RF output pin.
- (5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

NEC μ PC8172TK

The information in this document is current as of June, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

μPC8172TK NEC

▶For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

E-mail: salesinfo@csd-nec.com (sales and general) techinfo@csd-nec.com (technical)

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)
Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309 TEL: +852-3107-7303 Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859 TEL: +82-2-558-2120 FAX: +82-2-558-5209 Korea Branch Office

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-01 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279