300mA Low Dropout Linear Regulator with Shutdown

Description

The FP6133 is a low dropout, positive linear regulator with very low quiescent current. The FP6133 can supply 300mA output current with low dropout voltage at about 250mV. The BP pin with a 0.1uF bypass capacitor can help reduce the output noise level. The shutdown function can provide remote control for the external signal to decide the on/off state of FP6133. With a logic high level at SHDN pin, the device is in the on state, and vice versa.

The FP6133 regulator is able to operate with output capacitors as small as 1μ F for stability. The FP6133 also offers the on chip thermal shutdown feature providing protection against overload or any condition when the ambient temperature exceeds the maximum junction temperature.

The FP6133 offers high precision output voltage of \pm 2%. It is available in fixed output voltages including 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V and 3.6V.

The FP6133 is housed in low-profile, space-saving SOT-23-5, SC-70-5 and SC-82 packages.

Features

- Low Dropout Voltage of 250mV at 300mA
- High Ripple Rejection at 60 dB
- Guaranteed 60mA Output Current
- Very Low Quiescent Current at 30µA
- Max. ± 2% Output Voltage Accuracy
- Needs Only 1µF Capacitor for Stability
- Thermal Shutdown Protection
- Current Limit Protection
- Active Low Shutdown Control
- Low-ESR Ceramic Capacitor for Output Stability
- Tiny Packages: SOT-23-5, SC-70-5 and SC-82
- RoHS Compliant

Applications

- DSC
- Wireless Devices
- LCD Modules
- Battery Power Systems
- Card Readers
- PDA

FP6133

FP6133

Pin Assignments

Figure 1. Pin Assignment of FP6133

SOT-23-5 Marking

Part Number	Product Code	Part Number	Product Code
FP6133-15S5P	Fa	FP6133-30S5P	Ff
FP6133-15S5G	Fa=	FP6133-30S5G	Ff=
FP6133-18S5P	Fb	FP6133-31S5P	Ft
FP6133-18S5G	Fb=	FP6133-31S5G	Ft=
FP6133-25S5P	Fd	FP6133-32S5P	Fw
FP6133-25S5G	Fd=	FP6133-32S5G	Fw=
FP6133-28S5P	Fe	FP6133-33S5P	Fh
FP6133-28S5G	Fe=	FP6133-33S5G	Fh=
FP6133-29S5P	Fv	FP6133-36S5P	FH
FP6133-29S5G	Fv=	FP6133-36S5G	FH=

SC-82 Marking

Part Number	Product Code	Part Number	Product Code
FP6133-15C8G	E7=	FP6133-30C8G	F4=
FP6133-18C8G	E8=	FP6133-31C8G	F5=
FP6133-25C8G	E9=	FP6133-32C8G	F6=
FP6133-28C8G	F2=	FP6133-33C8G	F7=
FP6133-29C8G	F3=	FP6133-36C8G	F8=

Ordering Information

Note1 : Please consult Fitipower sales office or authorized distributors for availability of special output voltages.

SC-70-5 Marking

Part Number	Product Code	Part Number	Product Code
FP6133-15C5P	FA	FP6133-30C5P	FE
FP6133-15C5G	FA=	FP6133-30C5G	FE=
FP6133-18C5P	FB	FP6133-31C5P	FG
FP6133-18C5G	FB=	FP6133-31C5G	FG=
FP6133-25C5P	FC	FP6133-32C5P	Fz
FP6133-25C5G	FC=	FP6133-32C5G	Fz=
FP6133-28C5P	FD	FP6133-33C5P	FF
FP6133-28C5G	FD=	FP6133-33C5G	FF=
FP6133-29C5P	Fx	FP6133-36C5P	FJ
FP6133-29C5G	Fx=	FP6133-36C5G	FJ=

Typical Application Circuit

Figure 2. Typical Application Circuit of FP6133

Note2 : To prevent oscillation, it is recommended to use minimum 1µF X7R or X5R dielectric capacitors if ceramics are used as input/output capacitors.

Functional Pin Description

Pin Name	Pin Function
VIN	Power is supplied to this device from this pin which is required an input filter capacitor. In general, the input capacitor in the range of 1μ F to 10μ F is sufficient.
νουτ	The output supplies power to loads. The output capacitor is required to prevent output voltage from oscillation. The FP6133 is stable with an output capacitor 1μ F or greater. The larger output capacitor will be required for application with larger load transients. The large output capacitor could reduce output noise, improve stability, and PSRR.
GND	Common ground pin
BP	Reference Noise Bypass
SHDN	Pull this pin high to enable IC , pull this pin low to shutdown IC

Block Diagram

Figure 3. Block Diagram of FP6133

Absolute Maximum Ratings

• Supply Input Voltage (V _{IN})	+ 6V
• Maximum Junction Temperature (T _J)	+ 150°C
 Power Dissipation @25°C(P_D): 	
SOT-23-5	+ 0.4W
SC-70-5	+ 0.3W
SC-82	+ 0.2W
 Package Thermal Resistance(θ_{JA}): 	
SOT-23-5	+ 250°C/W
SC-70-5	+ 330°C/W
SC-82	+ 500°C/W
• Storage Temperature Range (T _s)	- 65°C to + 150°C
• Lead Temperature (Soldering, 10 sec.) (T _{LEAD})	+ 260°C
Note3 : Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent dar	mage to the device.

Recommended Operating Conditions

Input Voltage (V _{IN})	+ 2.8V to + 5.5V
 Operating Temperature Range (T_{OPR}) 	- 40°C to + 85°C

Electrical Characteristics

($V_{IN}=V_{OUT}+1V$ or $V_{IN}=2.8V$ whichever is greater, \overline{SHDN} pin connected to V_{IN} , $C_{IN}=1\mu$ F, $C_{OUT}=1\mu$ F, $T_A=25$ °C, unless otherwise specified)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Current Limit	I _{limit}	$R_{Load}=1\Omega$		300			mA
Quiescent Current	Ι _Q	I _O = 0mA			30	50	μA
Standby Current	I _{STBY}	V _{IN} =2.8~5V	/, Output Off			0.1	μA
Output Voltage Accuracy	ΔV_{OUT}	I _O = 1mA		-2		+2	%
			V _{OUT} =1.5 V		1250	1390	
			V _{OUT} =1.8 V		1050	1170	
Dropout Voltage (Note4)	V _{DROP}	I _O =300mA	V _{OUT} =2.5 V		460	560	mV
			V _{OUT} =3.0 V		340	400]
			V _{OUT} =3.3V		250	300	
Line Regulation	ΔV_{LINE}	I _O =1mA, V _{II}	I _O =1mA, V _{IN} =V _{OUT} +1V to 5V		1	5	mV
Load Regulation (Note5)	ΔV_{LOAD}	I _O =0mA to 300mA			6	20	mV
Ripple Rejection (Note6)	PSRR	$V_{IN}=V_{OUT}+1V$, $C_{BP}=0.1\mu F$ $f_{RIPPLE} = 120Hz$, $C_{OUT} = 1\mu F$			60		dB
Temperature Coefficient (Note6)	T.C.	I _{OUT} = 1mA, V _{IN} = 5V			50		ppm/ °C
Thermal Shutdown Temperature	T _{SD}				160		°C
(Note6)	ΔT_{SD}	Hysteresis			25		°C
Shutdown Pin Current						0.1	μA
Noise Bypass Terminal Voltage	V _{REF}				1.23		V
Shutdown Pin Voltage	$V_{\overline{\text{SHDN}}(\text{ON})}$	Output ON		1.4			V
	$V_{\overline{\text{SHDN}}(\text{OFF})}$	Output OFF	=			0.4	V
Shutdown Exit Delay Time (Note6)	ΔT	C _{BP} =0.1uF, C _{OUT} =1uF, I _{OUT} =30mA			300		μs

Note4 : The dropout voltage is defined as V_{IN}-V_{OUT}, which is measured when V_{OUT} drops 2% of its normal value with the specified output current.

Note5 : Load regulation and dropout voltage are measured at a constant junction temperature by using a 40ms low duty cycle current pulse.

Note6 : Guarantee by design.

FP6133

Typical Performance Curves

Figure 6. Current Limit vs. Temperature

Figure 8. Output Voltage vs. Temperature

Figure 5. Current limit vs. Input Voltage

Figure 7. Quiescent Current vs. Temperature

FP6133

Typical Performance Curves (Continued)

Figure 12. Shutdown Function

Figure 14. Line Transient Response

V_{IN}=4V -10 C_{IN}=4.7uF C_{out}=4.7uF -20 C__=0nF Ripple Rejection(dB) -30 -40 -50 -60 -70 -80 -90 -10 1000 10000 100000 100 1000000 Frequency(Hz)

Figure 11. Ripple Rejection vs. Frequency

Figure 13. Load Transient Response

Application Information

The FP6133 is a low dropout linear regulator that could provide 300mA output current at dropout voltage about 250mV. Current limit and on chip thermal shutdown features provide protection against any combination of overload or ambient temperature that could exceed maximum junction temperature.

Output and Input Capacitor

The FP6133 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability. Larger value of the output capacitor decreases the peak deviations and improves transient response for larger current changes.

The capacitor types (aluminum, ceramic, and tantalum) have different characterizations such as temperature and voltage coefficients. All ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature and applications. Common dielectrics used are X5R, X7R and Y5V. It is recommended to use 1uF to 10uF X5R or X7R dielectric ceramic capacitors with 30m Ω to 50m Ω ESR range between device outputs and ground for stability. The FP6133 is designed to be stable with low ESR ceramic capacitors and higher values of capacitors and ESR could improve output stability. The ESR of output capacitor is very important because it generates a zero to provide phase lead for loop stability.

There are no requirements for the ESR on the input capacitor, but its voltage and temperature coefficient have to be considered for device application environment.

Protection Features

In order to prevent overloading or thermal condition from damaging the device, FP6133 has internal thermal and current limiting functions designed to protect the device. It will rapidly shut off PMOS pass element during over temperature condition.

Thermal Consideration

The power handling capability of the device will be limited by allowable operation junction temperature (125°C). The power dissipated by the device will be estimated by $P_D = I_{OUT} \times (V_{IN}-V_{OUT})$. The power dissipation should be lower than the maximum power dissipation listed in "Absolute Maximum Ratings" section.

Shutdown Operation

The FP6133 is shutdown by pulling the \overline{SHDN} input low, and turned on by driving the \overline{SHDN} high. If this function is not used, the \overline{SHDN} input should be tied to VIN to keep the regulator on at all times (the \overline{SHDN} must not be left floating).

FP6133

Outline Information

SOT-23-5 Package (Unit: mm)

SYMBOLS	DIMENSION IN MILLIMETER			
UNIT	MIN	MAX		
А	1.00	1.20		
A1	0.00	0.10		
A2	1.00	1.10		
В	0.35	0.50		
D	2.80	3.00		
Е	2.60	3.00		
E1	1.50	1.70		
е	0.90	1.00		
e1	1.80	2.00		
L	0.35	0.55		

Note : Followed From JEDEC MO-178-C.

SC-70-5 Package (Unit: mm)

SYMBOLS	DIMENSION IN MILLIMETER		
UNIT	MIN	MAX	
А	0.90	1.10	
A1	0.00	0.10	
A2	0.90	1.00	
b	0.15	0.35	
D	1.80	2.20	
E1	1.80	2.40	
E	1.15	1.35	
е	0.55	0.75	
L	0.26	0.46	

Outline Information (Continued)

SC- 82 Package (Unit: mm)

SYMBOLS	DIMENSION IN MILLIMETER		
UNIT	MIN	MAX	
A	0.80	1.10	
A1	0.00	0.10	
A2	0.80	1.00	
В	0.25	0.40	
B1	0.35	0.50	
D	1.80	2.20	
E	1.15	1.35	
E1	1.80	2.40	
е	1.20	1.40	
L	0.25	0.45	