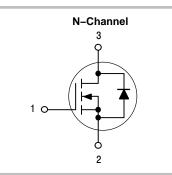
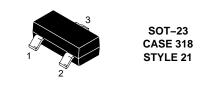
Preferred Device

Power MOSFET 200 mA, 50 V N-Channel SOT-23

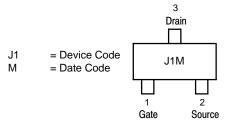
Typical applications are DC–DC converters, power management in portable and battery–powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features


- Pb–Free Packages are Available
- Low Threshold Voltage (V_{GS(th)}: 0.5 V–1.5 V) Makes it Ideal for Low Voltage Applications
- Miniature SOT-23 Surface Mount Package Saves Board Space



ON Semiconductor®


http://onsemi.com

200 mA, 50 V R_{DS(on)} = 3.5 Ω

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

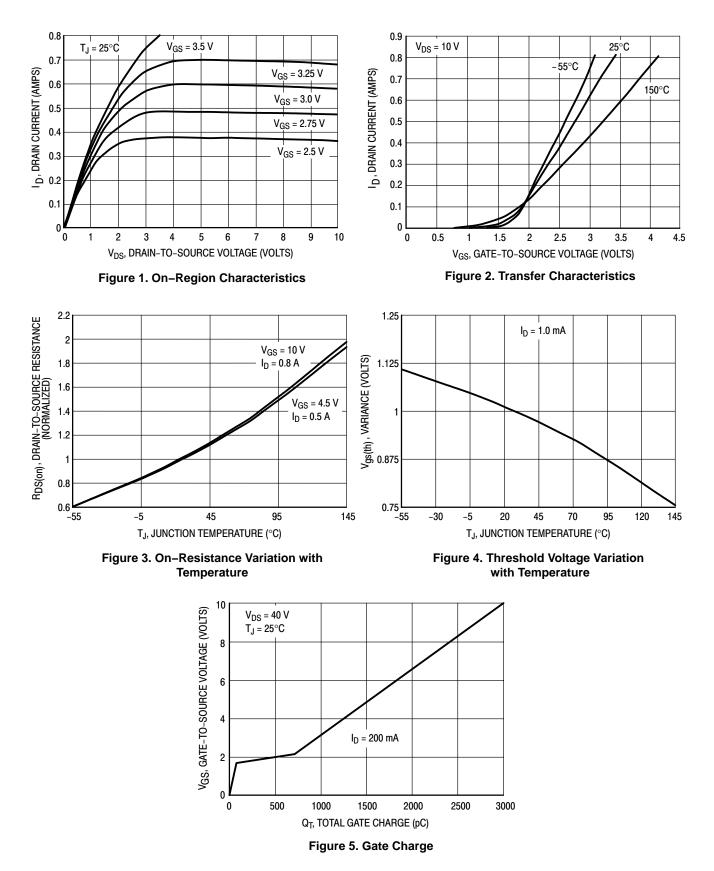
Device	Package	Shipping [†]
BSS138LT1	SOT-23	3000 Tape & Reel
BSS138LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
BSS138LT3	SOT-23	10,000 Tape & Reel
BSS138LT3G	SOT-23 (Pb-Free)	10,000 Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

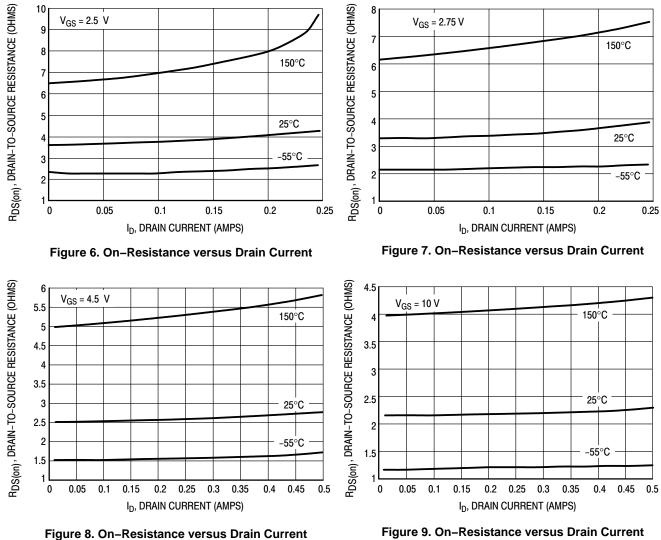
Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	50	Vdc
Gate-to-Source Voltage - Continuous	V_{GS}	± 20	Vdc
Drain Current – Continuous @ $T_A = 25^{\circ}C$ – Pulsed Drain Current ($t_p \le 10 \ \mu s$)	I _D I _{DM}	200 800	mA
Total Power Dissipation @ $T_A = 25^{\circ}C$	PD	225	mW
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C
Thermal Resistance – Junction-to-Ambient	R_{\thetaJA}	556	°C/W
Maximum Lead Temperature for Soldering Purposes, for 10 seconds	ΤL	260	°C


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS		·	-	•		·
Drain–to–Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu \text{Adc}$)		V _{(BR)DSS}	50	-	-	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$		I _{DSS}	-		0.1 0.5	μAdc
Gate–Source Leakage Current (V _{GS} = \pm 20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	±0.1	μAdc
ON CHARACTERISTICS (Note 1)						•
Gate-Source Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 1.0$ mAdc)		V _{GS(th)}	0.5	-	1.5	Vdc
Static Drain-to-Source On-Resistance $(V_{GS} = 2.75 \text{ Vdc}, I_D < 200 \text{ mAdc}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 200 \text{ mAdc})$		r _{DS(on)}		5.6 -	10 3.5	Ohms
Forward Transconductance $(V_{DS} = 25 \text{ Vdc}, I_D = 200 \text{ mAdc}, f = 1.0 \text{ kHz})$		9 _{fs}	100	-	-	mmhos
DYNAMIC CHARACTERISTICS		•				
Input Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{iss}	_	40	50	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{oss}	-	12	25	
Transfer Capacitance	$(V_{DG} = 25 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{rss}	-	3.5	5.0	1
SWITCHING CHARACTERISTICS	(Note 2)	•		•	•	•
Turn-On Delay Time		t _{d(on)}	_	-	20	ns
Turn-Off Delay Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 0.2 \text{ Adc},)$	t _{d(off)}	-	-	20	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS

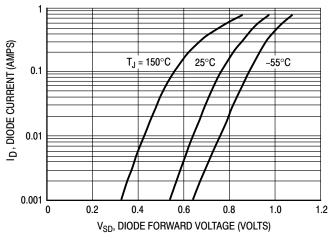


Figure 10. Body Diode Forward Voltage

Figure 9. On-Resistance versus Drain Current

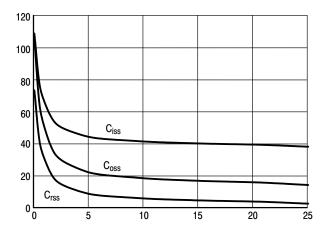
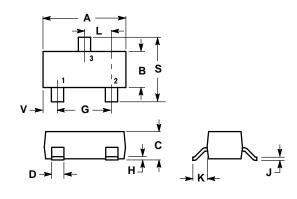
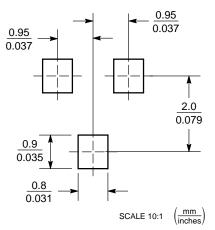



Figure 11. Capacitance

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AH**


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

JIES:
IDMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
MAXIMUM LEAD THICKNESS INCLUDES LEAD MAXIMUM LEAD THICKNESS INCLUDES LEAD INISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
. 318-03 AND -07 OBSOLETE, NEW STANDARD 318-08.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
Н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
К	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
٧	0.0177	0.0236	0.45	0.60	

STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and od vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in solut. C adta sheets and/or specifications can and do vary in different applications of actual performance may vary over time. All operating parameters which may be provided in solut. C and the solut. C products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cauld create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.