ReNESAS

HD74LV2G66A

2-channel Analog Switch

REJ03D0095-0400Z
(Previous ADE-205-566C (Z))
Rev.4.00
Sep. 302003

Description

The HD74LV2G66A has 2-channel analog switch in an 8 pin package. Each switch section has its own enable input control (C). High-level voltage applied to C turns on the associated switch section. Applications include signal gating, chopping, modulation, or demodulation (modem), and signal multiplexing for analog to digital and digital to analog conversion systems. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- Electrical characteristics equivalent to the HD74LV4066A

Supply voltage range : 1.65 to 5.5 V
Operating temperature range : -40 to $+85^{\circ} \mathrm{C}$

- Control inputs $\mathrm{V}_{\mathrm{IH}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- Control inputs has hysteresis voltage for the slow transition.
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV2G66AUSE	SSOP-8 pin	TTP-8DBV	US	$\mathrm{E}(3,000 \mathrm{pcs} / \mathrm{ree})$

Outline and Article Indication

- HD74LV2G66A

Function Table

Control
Switch

L	OFF
H	ON

H: High level
L: Low level

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	$V_{\text {cc }}$	-0.5 to 7.0	V	
Input voltage range**	V I	-0.5 to 7.0	V	
Output voltage range ${ }^{* 1,2}$	V_{0}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output: H or L
Input clamp current	I_{IK}	-20	mA	$\mathrm{V}_{1}<0$
Output clamp current	lok	± 50	mA	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$
Continuous output current	lo	± 25	mA	$\mathrm{V}_{\mathrm{O}}=0$ to V_{Cc}
Continuous current through $V_{C C}$ or GND	$\mathrm{ICC}_{\text {or }} \mathrm{I}_{\text {GND }}$	± 50	mA	
Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{* 3}$	P_{T}	200	mW	
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

HD74LV2G66A

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	$V_{\text {cc }}$	1.65	5.5	V	
Input voltage range	V_{1}	0	5.5	V	
Input / output voltage range	$\mathrm{V}_{1 / \mathrm{O}}$	0	V_{Cc}	V	
Input transition rise or fall rate	$\Delta t / \Delta v$	0	300	ns / V	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 1.95 V
		0	200		$\mathrm{V}_{\text {CC }}=2.3$ to 2.7 V
		0	100		$\mathrm{V}_{\text {CC }}=3.0$ to 3.6 V
		0	20		$\mathrm{V}_{\text {CC }}=4.5$ to 5.5 V
Operating free-air temperature	T_{a}	-40	85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating control inputs must be held high or low.

Electrical Characteristic

Item	Symbol VCC (V)		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$				Test Conditions
			Min	Typ	Max	Min	Typ	Max		
Input voltage	V_{IH}	1.65 to 1.95	-	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.75$	-	-	V	Control input only
		2.3 to 2.7	-	-	-	$\mathrm{V}_{\mathrm{CC} \times} \times 0.7$	-	-		
		3.0 to 3.6	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-		
		4.5 to 5.5	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		-		
	$\overline{\mathrm{V}} \mathrm{IL}$	1.65 to 1.95	-	-	-	-	-	$\mathrm{V}_{\mathrm{cc} \times 0.25}$		
		2.3 to 2.7	-	-	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
		3.0 to 3.6	-	-	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
		4.5 to 5.5	-	-	-	-	-	$\mathrm{V}_{\mathrm{CC} \times 0.3}$		
Hysteresis voltage	V_{H}	1.8	-	-	-	-	0.25	-	V	$\mathrm{V}_{T}{ }^{+}-\mathrm{V}_{T}{ }^{-}$
		2.5	-	-	-	-	0.30	-		
		3.3	-	-	-	-	0.35	-		
		5.0	-	-	-	-	0.45	-		
On-state switch resistance	Ron	1.65	-	120	360	-	-	450	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$
		2.3	-	60	180	-	-	225		
		3.0	-	50	150	-	-	190		
		4.5	-	40	75	-	-	100		
Peak on resistance	Ron (P)	1.65	-	400	1100	-	-	1400	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$
		2.3	-	200	500	-	-	600		
		3.0	-	90	180	-	-	225		
		4.5	-	50	100	-	-	125		
Difference of on- state resistance between switches	$\Delta \mathrm{R}_{\mathrm{ON}}$	1.65	-	40	120	-	-	160	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$
		2.3	-	20	30	-	-	40		
		3.0	-	10	20	-	-	30		
		4.5	-	7	15	-	-	20		
Off-state switch leakage current	$\mathrm{I}_{\text {(}}$ (OFF)	5.5	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \\ & \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{C}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$
On-state switch leakage current	$\mathrm{I}_{\text {(}}$ (ON)	5.5	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$
Input current	I_{N}	0 to 5.5	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$
Quiescent supply current	I_{CC}	5.5	-	-	-	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Control input capacitance	$\mathrm{Cl}_{\text {IC }}$	-	-	3.5	-	-	-	-	pF	
Switch terminal capacitance	$\mathrm{C}_{\text {IN / OUT }}$	-	-	4.0	-	-	-	-	pF	
Feed through capacitance	$\mathrm{C}_{\text {In-OUT }}$	-	-	0.5	-	-	-	-	pF	

Switching Characteristics

Item	Symbol	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	то (Output)
		Min	Typ	Max	Min	Max				
Propagation delay time	tPLH	-	4.0	13.0	-	19.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUTIN	OUT/IN or IN/OUT
	tpHL	-	11.0	23.0	-	29.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	$\mathrm{tzH}^{\text {H }}$	-	11.0	24.0	-	29.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	in/OUT or OUT/IN
	tzı	-	18.0	44.0	-	51.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\mathrm{thz}^{\text {l }}$	-	11.0	21.0	-	29.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	tLz	-	18.0	46.0	-	53.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

- $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Typ	Max	Min	Max				
Propagation delay time	tPLH	-	2.0	10.0	-	16.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
	tPHL	-	5.0	12.0	-	18.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	tz	-	6.0	15.0	-	20.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	tzı	-	8.0	25.0	-	32.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\mathrm{thz}^{\text {l }}$	-	7.0	15.0	-	23.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	tLz	-	11.0	25.0	-	32.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

- $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$

Item	Symbol	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Typ	Max	Min	Max				
Propagation delay time	tPLH	-	1.5	6.0	-	10.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUTIN	OUT/IN or IN/OUT
	tPHL	-	4.0	9.0	-	12.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	tz	-	4.0	11.0	-	15.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	tzl	-	6.0	18.0	-	22.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\mathrm{thz}^{\text {l }}$	-	5.0	11.0	-	15.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUTIIN
	tLz	-	8.0	18.0	-	22.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

Switching Characteristics (cont)

- $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Typ	Max	Min	Max				
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	-	1.0	4.0	-	7.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
	$\mathrm{t}_{\text {PHL }}$	-	3.0	6.0	-	8.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	t_{zH}	-	3.0	7.0	-	10.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	t_{LL}	-	5.0	12.0	-	16.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	thz	-	4.0	7.0	-	10.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
	tız	-	6.0	12.0	-	16.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

Operating Characteristics

Item	Symbol	V_{cc} (V)	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$			Unit	Test Conditions
			Min	Typ	Max		
Power dissipation capacitance	CPD	3.3	-	3.5	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
		5.0	-	4.0	-		

Test Circuit

- R_{ON}

- $\mathrm{I}_{\mathrm{S}}(\mathrm{off}), \mathrm{I}_{\mathrm{S}}(\mathrm{on})$

HD74LV2G66A

- $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$

Notes: 1. Input waveform : PRR $\leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$.
2. The output are measured one at a time with one transition per measurement.

- $\mathrm{t}_{\mathrm{ZH}}, \mathrm{t}_{\mathrm{ZL}} / \mathrm{t}_{\mathrm{HZ}} \mathrm{t}_{\mathrm{LZ}}$

Notes: 1. Input waveform : $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$.
2. Waveform - A is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform - B is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

HD74LV2G66A

- $\mathrm{C}_{\text {IN/OUT }}, \mathrm{C}_{\text {IN_OUT }}$

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Techny do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms,
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

