

2-INPUT 3CHANNEL VIDEO SWITCH

GENERAL DESCRIPTION

NJM2283 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs and 1 output, and then each set of 3 can be operated independently. It is a higher efficiency video switch, featuring the supply voltage range 4.75 to 13.0V, the frequency feature 10MHz, and then Crosstalk 75dB (at 4.43MHz).

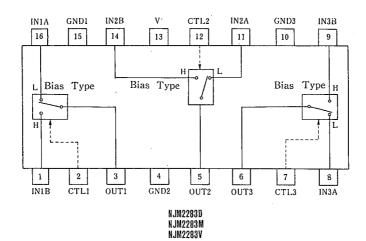
■ FEATURES

- 2 Input-1 Output 3 Circuits internalizing
- (4.75~13.0V) Wide Operating Voltage
- Crosstalk 75dB(at 4.43MHz)
- Wide Operating Supply Range 10MHz(2VP-P Input)
- Wide Bandwidth Frequency
- Package Outline DIP16, DMP16, SSOP16

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ PACKAGE OUTLINE


NJM2283D

NJM2283M

NJM2283V

■ BLOCK DIAGRAM

■ MAXIMUM RATINGS

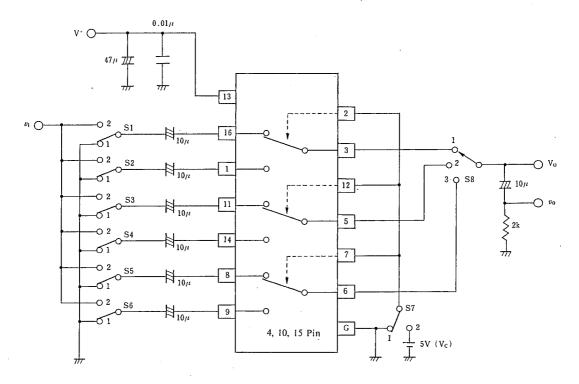
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	Λ,	14		
Power Dissipation	PD	(DIP16) 700	mW	
		(DMP16) 350	mW	
		(SSOP16) 300	mW	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

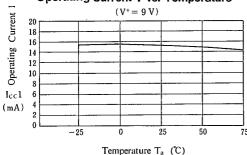
PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Operating Current (1)	lccı	V+=5V (Notel)	8.3	11.8	15.3	mA
Operating Current (2)	I _{CC2} .	V+=9V (Notel)	10.4	14.8	19.2	mΑ
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2 V_{P-P}, V_O / V_I$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB .
Differential Gain	DG	V ₁ =2V _{P-P} , Standard Staircase Signal		0.3	<u> </u>	%
Differential Phasa	DP	V ₁ =2V _{P-P} , Standard Staircase Signal		0.3	—	deg
Output Offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	CT	$V_1 = 2V_{P-P}, 4.43MHz, V_O/V_I$	_	-75		dB
Switch Change Over Voltage	V _{CH}	All inside switch ON	2.5	—		l v
Switch Change Over Voltage	V _{CL}	All inside switch OFF	_	_	1.0	V

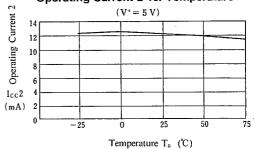

⁽Notel) S1=S2=S3=S4=S5=S6=S7=1

⁽Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

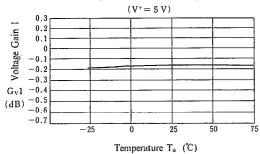
■ TERMINAL EXPLANATION

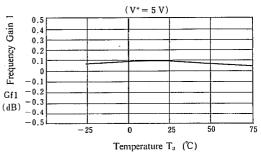
PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT			
16 1 11 14 8 9	IN 1 A IN 1 B IN 2 A IN 2 B IN 3 A IN 3 B (Input)	2.5V	500 15k 2.5V			
2 12 7	CTL 1 CTL 2 CTL 3 (Switching)		2.3V 1.9V 8k			
3 5 6	OUT 1 OUT 2 OUT 3 (Output)	1.8V	O OUT			
13	V+	5 V				
15 4 10	GND 1 GND 2 GND 3					

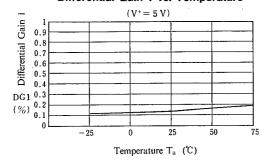

■ TEST CIRCUIT

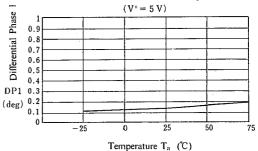

Parameter	SI	\$2	S 3	S 4	\$ 5	S 6	S 7	S 8	Test Part
Icci	1	1	1	1	1	1	1	1	V+
I _{CC2}	1	1	1	1	1	1	1	1	
Gv1	2	1	1	1	1	1	1	1	v_0
Grı	2	1,	1	1	1	1	1	1	
DG_1	2	1	1	1	1	1	1	1	
DPı	2	1	1	1	1	1	1	1	
CT1	2	1	1	1	1	1	2	1	v ₀
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vcı	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	<i>v</i> ₀

■ TYPICAL CHARACTERISTICS

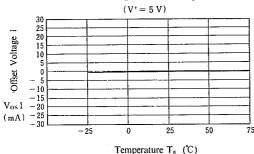

Operating Current 1 vs. Temperature

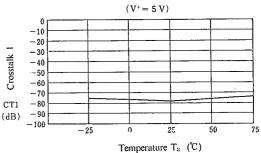

Operating Current 2 vs. Temperature


Voltage Gain 1 vs. Temperature

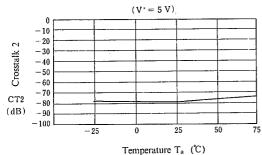

Frequency Gain 1 vs. Temperature

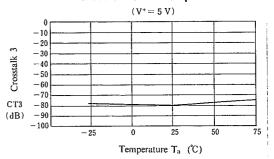
Differential Gain 1 vs. Temperature

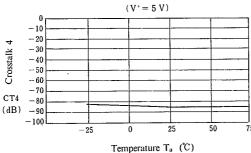

Differential Phase 1 vs. Temperature

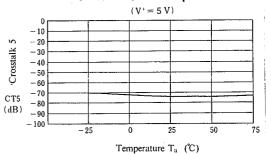

5

TYPICAL CHARACTERISTICS

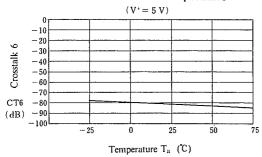

Offset Voltage 1 vs. Temperature


Crosstalk 1 vs. Temperature

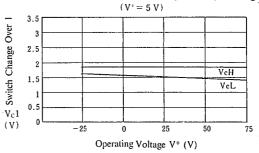

Crosstalk 2 vs. Temperature


Crosstalk 3 vs. Temperature

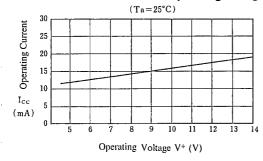
Crosstalk 4 vs. Temperature

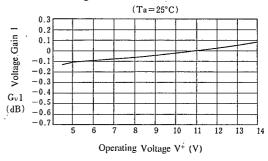


Crosstalk 5 vs. Temperature

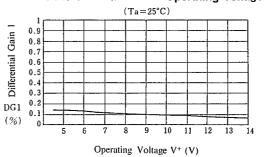


■ TYPICAL CHARACTERISTICS

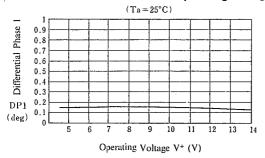

Crosstalk 6 vs. Temperature

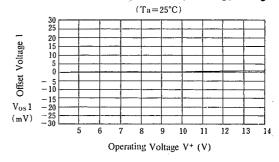

Switch Change Over 1 vs. Operating Voltage


Operating Current vs. Operating Voltage

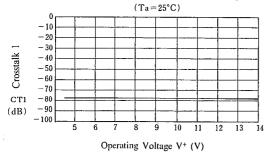

Voltage Gain 1 vs. Operating Voltage

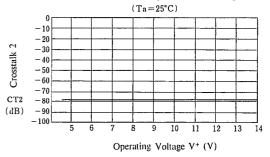
Frequency Gain 1 vs. Operating Voltage

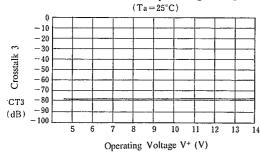

Differential Gain 1 vs. Operating Voltage

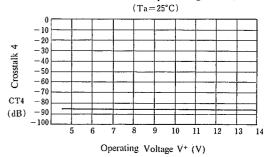

5

■ TYPICAL CHARACTERISTICS

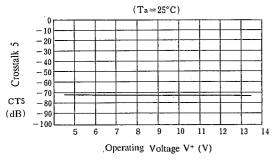

Differential Phase 1 vs. Operating Voltage


Offset Voltage 1 vs. Operating: Voltage

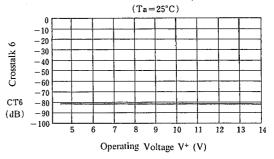

Crosstalk 1 vs. Operating Voltage


Crosstalk 2 vs. Operating Voltage

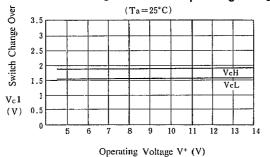
Crosstalk 3 vs. Operating Voltage

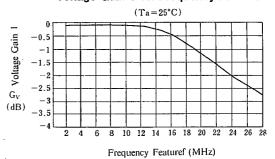


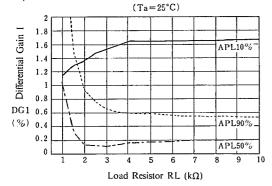
Crosstalk 4 vs. Operating Voltage

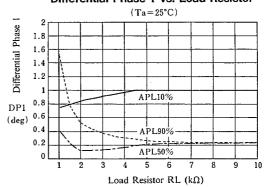


■ TYPICAL CHARACTERISTICS

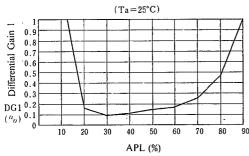

Crosstalk 5 vs. Operating Voltage

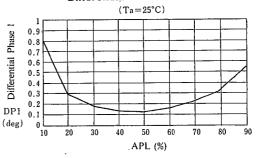

Crosstalk 6 vs. Operating Voltage


Switch Change Over 1 vs. Operating Voltage


Voltage Gain 1 vs. Frequency Feature

Differential Gain 1 vs. Load Resistor


Differential Phase 1 vs. Load Resistor


5

TYPICAL CHARACTERISTICS

Differential Phase 1 vs. APL

Total Harmonic Distortion vs. Load Resistor

NJM2283

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.