TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7S04F, TC7S04FU

INVERTER

The TC7S04 is a high speed C2MOS INVERTER fabricated with silicon gate C2MOS technology.

It achieves high speed operation similar to equivalent LSTTL while maintaining the C2MOS low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output.

The input is equipped with protection circuits against static discharge or transient excess voltage.

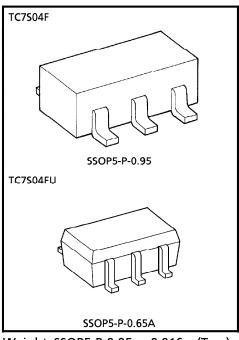
Output currents are 1/2 compared to TC74HC series models.

FEATURES

•	High Speed	 $t_{pd} = 7ns$	(Typ.)	at
		$V_{CC} = 5V$		

Low Power Dissipation ICC = 1μ A (Max.) at

 $Ta = 25^{\circ}C$

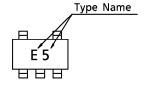

High Noise Immunity $V_{NIH} = V_{NIL}$ = 28% V_{CC} (Min.)

Output Drive Capability 5 LSTTL Loads

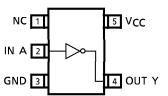
Symmetrical Output Impedance ... $|I_{OH}| = I_{OL}$ = 2mA (Min.)

Balanced Propagation Delays $t_{pLH} = t_{pHL}$

Wide Operating Voltage Range ... $V_{CC(opr)} = 2 \sim 6V$

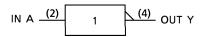


Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A: 0.006g (Typ.)


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	V _{IN}	-0.5~V _{CC} +0.5	V
DC Output Voltage	VOUT	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	ΙΚ	± 20	mΑ
Output Diode Current	loк	± 20	mA
DC Output Current	lout	± 12.5	mΑ
DC V _{CC} /Ground Current	lcc	± 25	mΑ
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	- 65∼150	°C
Lead Temperature (10s)	ΤL	260	°C

MARKING


PIN ASSIGNMENT (TOP VIEW)

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

CIRCUIT DIAGRAM

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
		$0\sim1000 \ (V_{CC}=2.0V)$	
Input Rise and Fall Time	t _r , t _f	$0 \sim 500 \ (V_{CC} = 4.5V)$	ns
		$0 \sim 400 \ (V_{CC} = 6.0V)$	

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION			Т	a = 25°	C	Ta = −40~85°C		UNIT
CHARACTERISTIC	3 TIVIBUL			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High Loyal	V _{IH}			2.0	1.5	_	_	1.5	_	
High-Level Input Voltage			_	4.5	3.15	 	—	3.15	—	V
input voltage				6.0	4.2	_	_	4.2	_	
Low-Level				2.0	_	_	0.5	_	0.5	
Input Voltage	VIL		_	4.5	—	—	1.35	<u> </u>	1.35	V
input voitage				6.0	_	_	1.8	_	1.8	
	Voн	OH NIN = NIT		2.0	1.9	2.0	_	1.9	_	
Iliah Laval			$I_{OH} = -20\mu A$	4.5	4.4	4.5	—	4.4	—	
High-Level				6.0	5.9	6.0	_	5.9	_	V
Output Voltage			I _{OH} = -2mA	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -2.6mA$	6.0	5.68	5.80	_	5.63	<u> </u>	
	V _{OL}			2.0	_	0.0	0.1	_	0.1	
l avvil aval			$I_{OL} = 20 \mu A$	4.5	—	0.0	0.1	_	0.1	
Low-Level		V _{IN} = V _{IH}		6.0	—	0.0	0.1	-	0.1	V
Output Voltage			$I_{OL} = 2mA$	4.5	—	0.17	0.26	<u> </u>	0.33	
			$I_{OL} = 2.6 mA$	6.0	_	0.18	0.26	_	0.33	
Input Leakage	IN	V _{IN} = V _{CC} (or GND	6.0			± 0.1		± 1.0	
Current	urrent ""									μΑ
Quiescent Supply Current	lcc	CC V _{IN} = V _{CC} or GND		6.0	—	—	1.0	_	10.0	

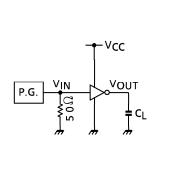
Output currents are 1/2 compared to TC74HC series models.

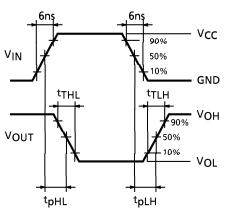
961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

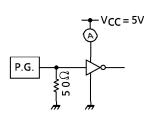
CHARACTERISTIC	SYMBOL	TEST CONDITION	Т	UNIT		
CHARACTERISTIC	STIVIBOL TEST CONDITION		MIN.	TYP.	MAX.	UIVII
Output Transition	t _{TLH}			5	10	ns
Time	tTHL	_			10	113
Propagation Delay	t _{pLH}			7	15	nc
Time	t _{pHL}	_		_ ′	13	ns

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)


CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	JIIVIDOL	TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	CIVII
Output Transition	+		2.0	_	50	125	_	155	
Time	t _{TLH}	_	4.5	 —	14	25	_	31	ns
Time	[†] THL		6.0	—	12	21	—	26	
Propagation Dalay	4		2.0	_	48	100	_	125	
Propagation Delay	t _{pLH}	_	4.5	l —	12	20	—	25	ns
Time	t _{pHL}		6.0	_	9	17	—	21	
Input Capacitance	CIN	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	(Note 1)		_	10	_	_	_	pF

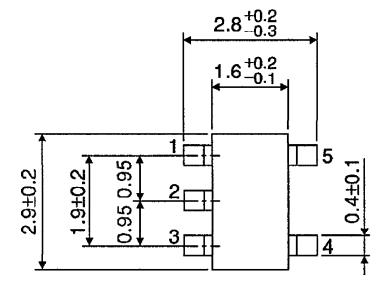

Note 1: CpD defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit).

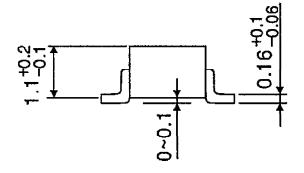
Average operating current can be obtained by the equation hereunder.


$$ICC (opr) = CPD \cdot VCC \cdot fIN + ICC$$

SWITCHING CHARACTERISTICS TEST CIRCUIT

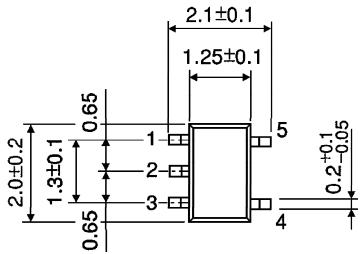
ICC (opr) TEST CIRCUIT

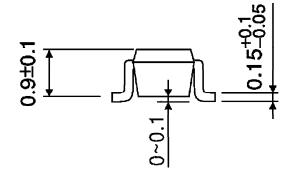



input waveform is the same as that in case of switching characteristics test.

OUTLINE DRAWING

SSOP5-P-0.95




Weight: 0.016g (Typ.)

OUTLINE DRAWING

SSOP5-P-0.65A

Unit: mm

Weight: 0.006g (Typ.)