

3 Pin Microcontroller Power Supply Supervisor

General Description

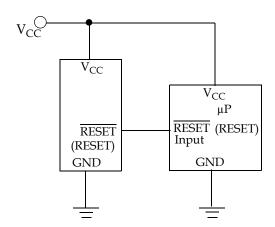
The ASM809/ASM810 are cost effective 3.0V, 3.3V and 5.0V power supply supervisor circuits optimized for low-power microprocessor (μ P), microcontroller (μ C) and digital systems. They provide a reset output during power-up, power-down and brown-out conditions. They provide excellent reliability by eliminating external components and adjustments. The ASM809/810 are improved drop-in replacements for the Maxim MAX809/810 and feature 60% lower supply current.

A reset signal is issued if the power supply voltage drops below a preset reset threshold and is asserted for at least 140ms after the supply has risen above the reset threshold. The ASM809 has an active-low $\overline{\text{RESET}}$ output that is guaranteed to be in the correct logic state for V_{CC} down to 1.1V. The ASM810 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC} .

Low supply current makes the ASM809/ASM810 ideal for use in portable and battery operated equipment. The ASM809/ASM810 are available in a compact, industry standard 3-pin SOT23 package.

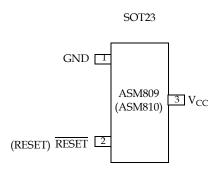
Applications

- · Embedded controllers
- · Portable/Battery operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and handheld equipment
- Computers

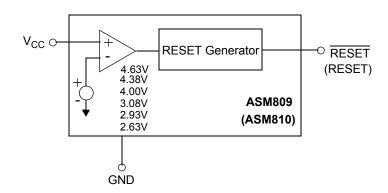

Six voltage thresholds are available to support 3V to 5V systems:

RESET THRESHOLD				
Suffix Voltage				
L	4.63			
М	4.38			
J	4.00			
Т	3.08			
S	2.93			
R	2.63			

Features:


- Monitor 5V, 3.3V and 3V supplies
- 140ms min. reset pulse width
- Active-low reset valid with 1.1V supply (ASM809)
- Small 3-pin SOT-23 package
- No external components
- Specified over full temperature range -40°C to 105°C

Typical Operating Circuit



Pin Diagram

Block Diagram

Pin Description

Pi	n #	Pin	Function
ASM809	ASM810	Name	Function
1	-	GND	Ground.
2	-	RESET	$\overline{\text{RESET}}$ is asserted LOW if V_{CC} falls below V_{TH} and remains LOW for T_{RST} after V_{CC} exceeds the threshold.
-	2	RESET	RESET is asserted HIGH if V_{CC} falls below V_{TH} and remains HIGH for T_{RST} after V_{CC} exceeds the threshold.
3	-	V_{CC}	Power supply input voltage (3.0V, 3.3V, 5.0V).

Detailed Description

A proper reset input enables a microprocessor / microcontroller to start in a known state. ASM809/810 assert reset to prevent code execution errors during power-up, power-down and brown-out conditions.

Reset Timing

The reset signal is asserted- LOW for the ASM809 and HIGH for the ASM810- when the V_{CC} supply voltage falls below the threshold trip voltage and remains asserted for 140ms minimum after the V_{CC} has risen above the threshold.

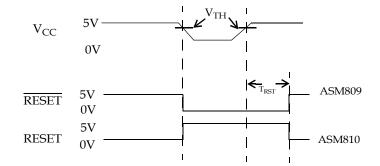


Figure 1: Reset Tlming Diagram

Application Information

Negative V_{CC} Transients

The ASM809/810 protect μPs from brownouts and low V_{CC} . Short duration transients of 100mV amplitude and 20 μs or less duration typically do not cause a false RESET.

Valid Reset with V_{CC} under 1.1V

When V_{CC} is under 1.1V, to ensure logic inputs connected to the ASM809 \overline{RESET} pin are in a known state, a $100k\Omega$ pull-down resistor is needed at \overline{RESET} . The value of the resistor is not critical. A $100k\Omega$ pull-up resistor to V_{CC} at RESET is needed with the ASM810.

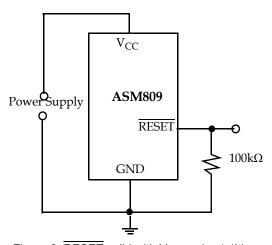


Figure 2: $\overline{\text{RESET}}$ valid with V_{CC} under 1.1V

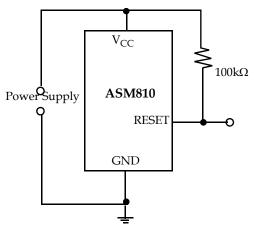


Figure 3: RESET valid with V_{CC} under 1.1V

Bidirectional Reset Pin Interfacing

The ASM809/810 can interface with μP / μC bi-directional reset pins by connecting a 4.7k Ω resistor in series with the ASM809/810 reset output and the $\mu P/\mu C$ bi-directional reset pin.

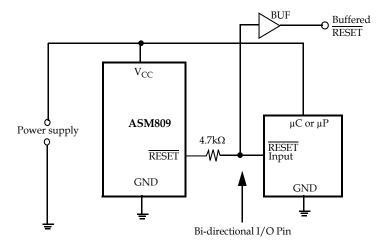


Figure 4: Bidirectional Reset Pin Interfacing

Absolute Maximum Ratings Table 1:

Parameter	Min	Max	Units
Pin Terminal Voltage With Respect To Groun	nd		
V _{CC}	-0.3	6.0	V
RESET, RESET	-0.3	V _{CC} + 0.3	V
Input current at V _{CC}		20	mA
Output current: RESET, RESET		20	mA
Rate of Rise at V _{CC}		100	V/µs

Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Absolute Maximum Ratings Table 2:

Parameter	Min	Max	Units
Power Dissipation (T _A = 70°C)		320	uW
Operating temperature range	-40	105	°C
Storage temperature range	-65	160	°C
Lead temperature (Soldering, 10 sec)		300	°C

Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics:

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C.

Typical values at T_A = 25°C, V_{CC} = 5V for L/M/J devices, V_{CC} = 3.3V for T/S devices and V_{CC} = 3V for R devices.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	Input Voltage Range	$T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$		1.1 1.2		5.5 5.5	V V
I _{CC}	Supply Current	T_A = -40°C to 85°C T_A = -40°C to 85°C T_A = 85°C to 105°C T_A = 85°C to 105°C	$V_{CC} < 5.5V, L/M/J$ $V_{CC} < 3.6V, R/S/T$ $V_{CC} < 5.5V, L/M/J$ $V_{CC} < 3.6V, R/S/T$		9 6.8	15 10 25 20	μА
	L devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	4.56 4.50 4.40	4.63	4.70 4.75 4.86		
		M devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	4.31 4.25 4.16	4.38	4.45 4.50 4.56	
V		J devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	3.93 3.89 3.80	4.00	4.06 4.10 4.20	
V _{TH}	Reset Threshold	T devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	3.04 3.00 2.92	3.08	3.11 3.15 3.23	V
		S devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.89 2.85 2.78	2.93	2.96 3.00 3.08	
		R devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.59 2.55 2.50	2.63	2.66 2.70 2.76	
	Reset Threshold Temp Coefficient				30		ppm/°C
	V _{CC} to Reset Delay	$V_{CC} = V_{TH}$ to V_{TH} -10	0mV		60		μs

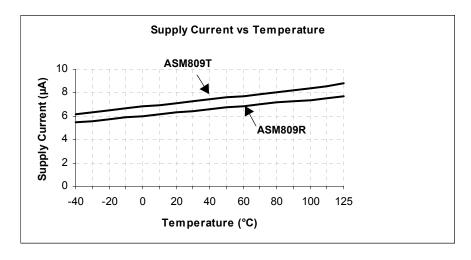
Notes

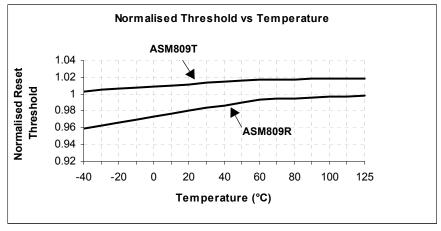
^{1.} Production testing done at T_A = 25°C. Over-temperature specifications guaranteed by design only, using six sigma design limits.

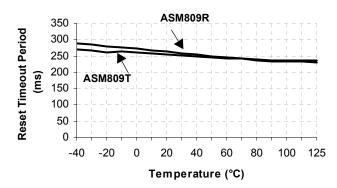
^{2.} RESET output is active LOW for the ASM809 and RESET output is active HIGH for the ASM810.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Doost Astive	T _A = -40°C to 85°C	140		560	
	Reset Active Timeout Period	T _A = 85°C to 105°C	100	240	840	ms
	J DEOET	V _{CC} = V _{TH} min., I _{SINK} = 1.2mA, ASM809R/S/T			0.3	
V_{OL}	Low RESET Output Voltage	V _{CC} = V _{TH} min., I _{SINK} = 3.2mA, ASM809L/M/J			0.4	V
	(ASM809)	V _{CC} > 1.1V, I _{SINK} = 50μA			0.3	
Vari	High RESET Output Voltage	$V_{CC} > V_{TH}$ max., $I_{SOURCE} = 500\mu A$, ASM809R/S/T	0.8V _{CC}			V
V _{OH}	(ASM809)	$V_{CC} > V_{TH}$ max., $I_{SOURCE} = 800\mu A$, ASM809L/M/J	V _{CC} - 1.5			V
V _{OL}	Low RESET Output Voltage (ASM810)	V _{CC} = V _{TH} max., I _{SINK} = 1.2mA, ASM810R/S/T			0.3	V
		V _{CC} = V _{TH} max., I _{SINK} = 3.2mA, ASM810L/M/J			0.4	V
V _{OH}	High RESET Output Voltage (ASM810)	1.8V < V _{CC} < V _{TH} min., I _{SOURCE} = 150μA	0.8V _{CC}			V
T _{RST}	Active Reset Timeout Period	V _{CC} > V _{TH}	140	240		msec

Notes:

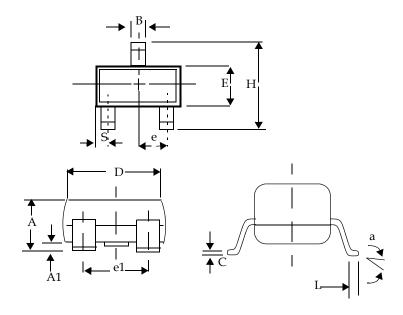

^{1.} Production testing done at T_A = 25°C. Over-temperature specifications guaranteed by design only, using six sigma design limits.


^{2.} RESET output is active LOW for the ASM809 and RESET output is active HIGH for the ASM810.


Typical Operating Characteristics

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C. Typical values at T_A = 25°C, V_{CC} = 5V for L/M/J devices, V_{CC} = 3.3V for T/S devices and V_{CC} = 3V for R devices.

Reset Timeout Period vs Temperature



rev 1.0

Package Dimensions

	Incl	nes	Millim	eters				
	Min	Max	Min	Max				
	Plastic SOT-23 (3-Pin)							
Α	0.031	0.050	0.80	1.27				
A1	0.004	0.010	0.10	0.25				
В	0.015	0.020	0.37	0.51				
С	0.003	0.007	0.085	0.18				
D	0.110	0.120	2.80	3.04				
Е	0.047	0.055	1.20	1.40				
е	0.035	0.040	0.89	1.03				
e1	0.070	0.080	1.78	2.05				
Н	0.083	0.103 9	2.10	2.64				
L	0.027 REF		0.069	REF				
S	0.018	0.024	0.45	0.60				

rev 1.0

Ordering Information:

Part Number ¹	Reset Threshold (V)	Temperature Range	Pin-Package	Package Marking (XX Lot Code)		
ASM809 ACTIVE LOW RESET						
ASM809LEUR-T	4.63	-40°C to +105°C	3-SOT23	SAXX		
ASM809MEUR-T	4.38	-40°C to +105°C	3-SOT23	SBXX		
ASM809JEUR-T	4.00	-40°C to +105°C	3-SOT23	SCXX		
ASM809TEUR-T	3.08	-40°C to +105°C	3-SOT23	SDXX		
ASM809SEUR-T	2.93	-40°C to +105°C	3-SOT23	SEXX		
ASM809REUR-T	2.63	-40°C to +105°C	3-SOT23	SFXX		
	ASM8	10 ACTIVE HIGH RESET				
ASM810LEUR-T	4.63	-40°C to +105°C	3-SOT23	SGXX		
ASM810MEUR-T	4.38	-40°C to +105°C	3-SOT23	SHXX		
ASM810JEUR-T	4.00	-40°C to +105°C	3-SOT23	SIXX		
ASM810TEUR-T	3.08	-40°C to +105°C	3-SOT23	SJXX		
ASM810SEUR-T	2.93	-40°C to +105°C	3-SOT23	SKXX		
ASM810REUR-T	2.63	-40°C to +105°C	3-SOT23	SLXX		

Notes:

Related Products:

	ASM809	ASM810	ASM811	ASM812
Max Supply Current	15μΑ	15μΑ	15μΑ	15μΑ
Package Pins	3	3	4	4
Manual RESET input			•	
Package Type	SOT-23	SOT-23	SOT-143	SOT-143
Active-HIGH RESET Output				
Active-LOW RESET Output				

^{1.} Tape and Reel packaging is indicated by the -T designation.

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900

Fax: 408 - 855 - 4999

www.alsc.com

Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM809, ASM810 Document Version: v 1.0

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems