

ESDALC6V1M3

Dual low capacitance TRANSIL™ array for ESD protection

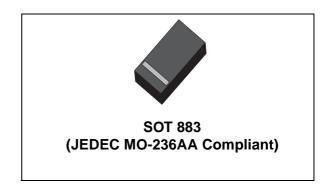
Main product applications

Where transient overvoltage protection in ESD sensitive equipment is required, such as:

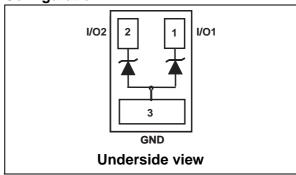
- Computers
- Printers
- Communication systems
- Cellular phone handsets and accessories
- Video equipment

Features

- 2 unidirectional low capacitance TRANSIL diodes
- Breakdown Voltage V_{BR} = 6.1 V min
- Low diode capacitance (11 pF typ at 0 V)
- Low leakage current < 0.5 µA
- Very small PCB area: 0.6 mm²


Description

The ESDALC6V1M3 is a monolithic array designed to protect 1 line or 2 lines against ESD transients.


The device is ideal for applications where both reduced line capacitance and board space saving are required.

Benefits

- High ESD protection level
- High integration
- Suitable for high density boards

Configuration

Order code

Part number	Marking	
ESDALC6V1M3	K	

Complies with the following standards

IEC61000-4-2 level 4: 15 kV (air discharge)

8 kV (contact discharge)

MIL STD 883E-Method 3015-7: class 3

HBM (Human Body Model)

TRANSIL is a trademark of STMicroelectronics

Rev 1 1/7 1 Characteristics ESDALC6V1M3

1 Characteristics

1.1 Absolute ratings (T_{AMB} = 25 °C - limiting values)

Symbol		Parameter		Value	Unit
V _{PP}	ESD discharge	IEC61000-4-2 air discharge IEC61000-4-2 contact discharge		± 15 ± 8	kV
P _{PP}	Peak pulse power dissipation (8/20 μ s) ⁽¹⁾ T_j initial = T_{AMB}			30	W
I _{pp}	Repetitive peak pulse current typical value (8/20 µs)			3	Α
Tj	Junction temperature			125	°C
Tstg	Storage temperature range			-55 + 150	°C
T _L	Maximum lead temperature for soldering during 10 s			260	°C
T _{OP}	Operating temperature range			-40 + 125	°C

^{1.} For a surge greater than the maximum values, the diode will fail in short-circuit.

1.2 Electrical characteristics (T_{AMB} = 25 °C)

Symbol	Parameter	'1
V _{RM}	Stand-off voltage	1 _F
V_{BR}	Breakdown voltage	
V _{CL}	Clamping voltage	V _{CL} V _{BR} V _{RM}
I _{RM}	Leakage current @ V _{RM}	RM IR
I _{PP}	Peak pulse current	F∖Slope=1/R _d
αΤ	Voltage temperature coefficient	Ipp
V_{F}	Forward voltage drop	

Parameter	Test condition	Min	Тур	Max	Unit
V_{BR}	I _R = 1 mA	6.1		7.2	V
I _{RM}	V _{RM} = 5 V			0.5	μΑ
R _d			1.1		Ω
αΤ	I _R = 1 mA			4.2	10 ⁻⁴ /°C
С	$V_R = 0 \text{ V}, F = 1 \text{ MHz}, V_{OSC} = 30 \text{ mV}$		11		pF

ESDALC6V1M3 1 Characteristics

Figure 1. S21 attenuation measurement results of each channel

Figure 2. Analog crosstalk measurements between channels

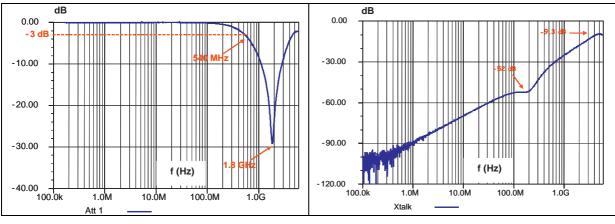


Figure 3. ESD response to IEC61000-4-2 (+15 kV air discharge) on each channel

Figure 4. ESD response to IEC61000-4-2 (-15 kV air discharge) on each channel.

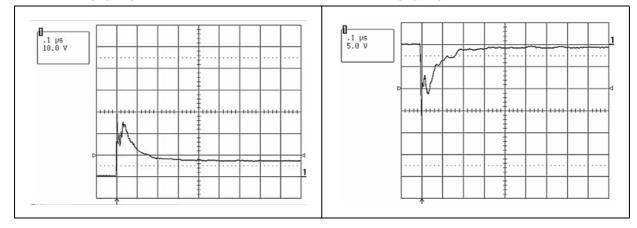


Figure 5. Relative variation of peak pulse power versus initial junction temperature

Figure 6. Peak pulse power versus exponential pulse duration

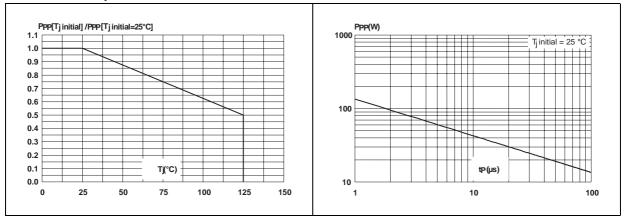


Figure 7. Clamping voltage versus peak pulse Figure 8. Forward voltage drop versus peak current (typical values)

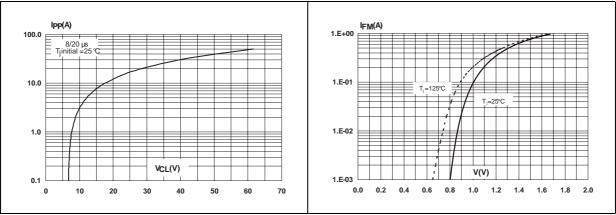
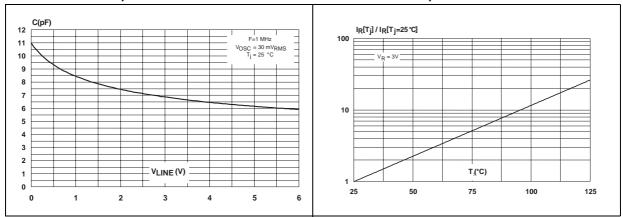
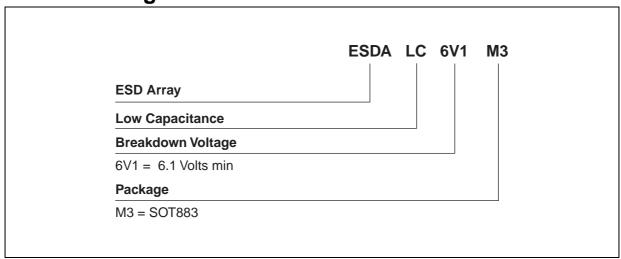




Figure 9. Junction capacitance versus reverse voltage applied (typical values)

Figure 10. Relative variation of leakage current versus junction temperature (typical values)

2 Ordering information scheme

57

ESDALC6V1M3 3 Package information

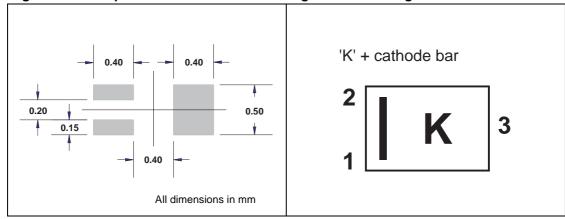

3 Package information

Table 1. Mechanical data

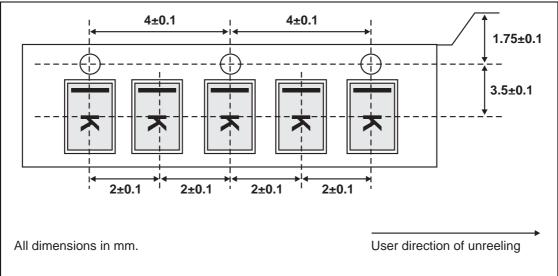

Figure 11. Foot print

Figure 12. marking

4 Ordering information ESDALC6V1M3

Figure 13. Packing information

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

4 Ordering information

Part number	Marking	Package	Weight	Bulk qty	Delivery mode
ESDALC6V1M3	K	SOT883	0.96 mg	30 000	Tape and reel

5 Revision history

	Date	Revision	Changes
Ī	04-Aug-2005	1	Initial release.

ESDALC6V1M3 5 Revision history

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

