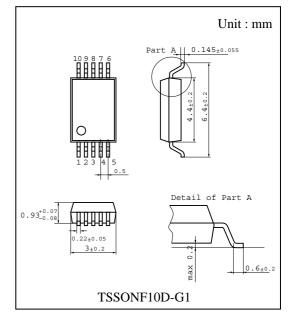
Panasonic


EL Display Driving IPD Series with Built-in Diode MIP824/MIP825/MIP826

Overview

This series of IPDs (Intelligent Power Devices) incorporates a diode which formerly was connected externally. It can drive an EL display with high brightness and low power consumption. When compared to conventional IPDs, package thickness has been reduced from 1.4mm to 1.2mm, thus contributing to smaller and lighter equipment design.

Feature

- Oscillating frequency adjustment possible with external resistor (MIP824,MIP825)
- Built-in diode to reduce need for external components
- Slim package (10-pin flat type)

Specifications

Parameter	Symbol	MIP824	MIP825	MIP826	
Driving voltage	Vcc	2.5 to 5.5V	1.2 to 3.5V	1.2 to 3.5V	
Driving system		Push-pull	Single		
EL frequency	fel	250Hz (RT=820 kΩ)	340Hz (fixed)	230Hz (RT=330 kΩ)	
Max. EL voltage	VEL	230Vp-p	200Vp-p	200Vp-p	
Static current consumption	Icoff	$< 0.3 \ \mu A$	$< 0.1 \ \mu A$	$< 0.1 \ \mu A$	
EL area		UP to 70cm ²	UP to 30cm ²	UP to 30cm ²	

Applications

- Cell phone backlights (displays, buttons)
- LCD backlights

The products and specification are subject to change without any notice. Please ask for the latest Product Standards to guarantee the satisfaction of your product requirements.

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

1 Kotari-yakemachi, Nagaokakyo, Kyoto 617-8520, Japan

Tel. (075)951-8151

http://www.panasonic.co.jp/semicon/ New publication, effective from Sep.27 2002.

<u>MIP824</u>

CMOS Type

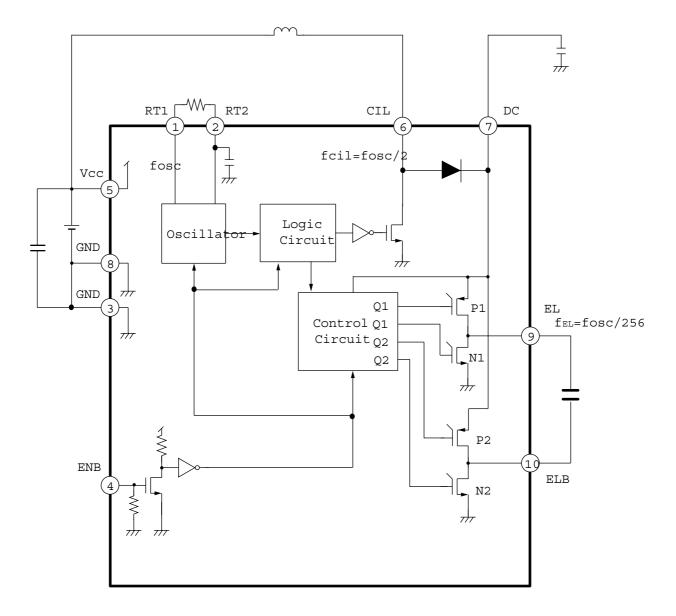
Electro Luminescent Lamp Driver

Absolute Maximum Ratings (Ta = $25 \pm 3 \circ C$)

Parameter	Symbol	Rating	Unit
Supply Voltage (VCC)	Vcc	-0.5 to 5.5	v
Input Voltage (ENB)	VENB	-0.5 to VCC+0.5	v
Output Voltage (DC)	VDC	-0.5 to 115	v
Output Voltage (EL)	VEL	-0.5 to 115	v
Output Voltage (ELB)	VELB	-0.5 to 115	v
Output Peak Current (EL)	IEL	150	mA
Output Peak Current (ELB)	IELB	150	mA
Output Peak Current (CIL)	ICIL *1	600	mA
Output Current (CIL)*	IOCIL *2	100	mA
Power Dissipation	PD	120	mW
Operating Ambient Temperature	Topr	-20 to +70	°C
Operating Junction Temperature	Tch	-20 to +125	°C
Storage Temperature	Tstg	-55 to +125	°C

*1 : The saturation current of MOSFET for set-up coil.

*2 : Average current on inductor drive.


■ Electrical Characteristics (Ta = 25 ± 3 °C)

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
[Operatin	g Condition]						
Supply V	Voltage (VCC)	Vcc		2.5	_	5.5	V
High Le	vel Input Voltage (ENB)	Vih	VCC = 2.5 to 5.5V	1.0	_	VCC	V
Low Lev	vel Input Voltage (ENB)	VIL	VCC = 2.5 to 5.5V	0	_	0.3	V
[Output]							
	Output Voltage	VDSS-CIL	$ENB = 0V, ICIL = 20\mu A$	115	_	-	V
	Output ON-State Resistance	Ron	ICIL = 20mA	_	8	12	Ω
Inductor	Output OFF-Leakage Current	IDSS-CIL	ENB = 0V, VCIL = 120V	_	_	10	μΑ
Output (CIL)	Output Current	Idscil3v	VCC = ENB = 3.0V VCIL = 20V	230	280	_	mA
		Idscil5v	VCC = ENB = 5.0V VCIL = 20V	_	520	_	mA

Electrical Characteristics (Ta = $25 \pm 3 \circ C$)

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output]							
EL Output	Output Voltage	VDSS-EL	RT2 = 3.0V Idc - el = 60 μ A	115	_	_	v
-	Output OFF-Leakage Current	IDSS-EL		_	_	50	μΑ
ELB Output	Output Voltage	VDSS-ELB	RT2 = 0V Idc - elb = 60 μ A	115	_	_	v
	Output OFF-Leakage Current	IDSS-ELB		_	_	50	μΑ
DC Output	Output OFF-Leakage Current	VDC	ENB = 0, DC = 115V	_	_	65	μA
Diode	Reverse Current	IR	DC = 115V, CIL = 0V $ENB = 0V$	_	_	1	μΑ
	Forward Voltage	VF	ICIL =100mA, ENB = 0V, DC = 0V	_	_	1.4	v
Oscillato	pr]						
Oscillator output Frequency (RT1)		fosc 3V	$RT = 820k\Omega$ $Vcc = 3.0V, ENB = 3.0V$	54	64	74	kHz
osemut		fosc 5V	$RT = 820k\Omega$ $VCC = 5.0V, ENB = 5.0V$	_	64	_	kHz
		fel 3V	$RT = 820k\Omega$ $VCC = 3.0V, ENB = 3.0V$	213	254	295	Hz
EL Freq	uency (EL/ELB)	fel 5V	$RT = 820k\Omega$ $VCC = 5.0V, ENB = 5.0V$	_	254	-	Hz
T 1 .		fcoil 3V	$RT = 820k\Omega$ $VCC = 3.0V, ENB = 3.0V$	26.9	32	37.1	kHz
Inductor	Frequency (CIL)	fcoil 5V	$RT = 820k\Omega$ $VCC = 5.0V, ENB = 5.0V$	_	32	-	kHz
Inductor	Duty Cycle (CIL)	Dcoil	$RT = 820k\Omega$ $VCC = 3.0V, ENB = 3.0V$	70	75	80	%
Supply	current]						
Quiescer	nt Supply Current	ICOFF	Vcc = 5.0V, $ENB = 0VRT = 390k\Omega$	-	_	0.3	μΑ
Supply ((Excludi	Current ng inductor current)	IC	$V_{CC} = ENB = 5.5V$ $RT = 390k\Omega$	_	1	2	mA

Block Diagram

Pin Description

1	RT1	6	CIL
2	RT2	7	DC
3	GND	8	GND
4	ENB	9	EL
5	Vcc	10	ELB

<u>MIP825</u>

CMOS Type

Electro Luminescence Driver

Absolute Maximum Ratings (Ta = $25 \pm 3 \circ C$)

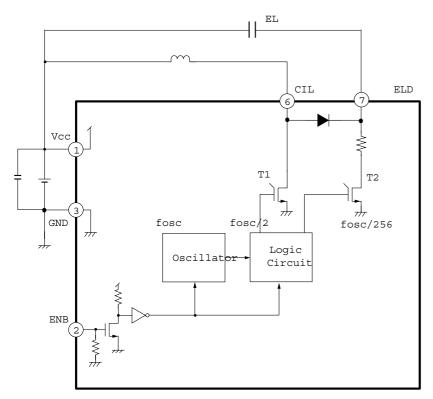
Parameter	Symbol	Rating	Unit
Supply Voltage (VCC)	Vcc	-0.5 to 3.5	v
Input Voltage (ENB)	VENB	-0.5 to VCC+0.5	v
Output Voltage (CIL)	VCIL	-0.5 to 200	v
Output Voltage (ELD)	VELD	-0.5 to 200	V
Output Current (CIL)	ICIL *1	600	mA
Output Current (ELD)	Ield	50	mA
Power Dissipation	PD	120	mW
Operating Ambient Temperature	Topr	-20 to +70	°C
Operating Junction Temperature	Tch	-20 to +125	°C
Storage Temperature	Tstg	-55 to +125	°C

*1 : The saturation current of MOSFET for set-up coil.

■ Electrical Characteristics (Ta = 25 ± 3 °C)

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
[Operatin	g Condition]						
Supply V	/oltage (VCC)	Vcc		1.2	2.5	3.5	V
High Le	vel Input Voltage (ENB)	VIH	VCC = 1.2 to 3.5V	1.0	_	VCC	V
Low Lev	vel Input Voltage (ENB)	VIL	VCC = 1.2 to 3.5V	0	_	0.3	V
[Output]							
Inductor	Output Voltage	VDSS-CIL	$ENB = 0V, IDS = 20\mu A$	200	_	_	V
Output	Output Current	IDS-CIL	VDS = 5V	-	350	_	mA
(CIL)	Output ON-State Resistance	Ron-cil	ID = 5mA	-	8.0	12	Ω
	Output OFF-Leakage Current	IDSS-CIL	ENB = 0, $VDS = 160V$	-	_	10	μΑ
EL	Output Voltage	VDSS-ELD	$ENB = 0V, IDS = 20\mu A$	200	_	_	V
Output	Output Current	IDS-ELD	VDS = 25V	4	10	_	mA
(ELD)	Output ON-State Resistance	RON-ELD	ID = 5mA	_	3.0	3.5	kΩ
	Output OFF-Leakage Current	IDSS-ELD	ENB = 0, $VDS = 160V$	_	_	10	μA
Diode	Reverse Current	IR	VELD = 200V, VCIL = 0V	_	_	1	μA
Didde	Forward Voltage	VF	ICIL = 100mA , Veld = 0V	_	_	1.4	V

MIP825


Electrical Characteristics (Ta = $25 \pm 3 \circ C$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Oscillator]						
Oscillator output Frequency	fosc	$V_{CC} = ENB = 2.5V,$ RT = build in	74	88	102	kHz
Inductor Frequency (CIL)	fcoil	$V_{CC} = ENB = 2.5V,$ RT = build in	37	44	51	kHz
Inductor Duty Cycle (CIL)	Dcoil	VCC = ENB = 2.5V, RT = build in	70	75	80	%
EL Frequency (ELD)	fel	$V_{CC} = ENB = 2.5V,$ RT = build in	290	340	400	Hz
EL Duty Cycle (ELD)	Del	$V_{CC} = ENB = 2.5V,$ RT = build in	20	25	30	%

[Supply Current]

Quiescent Supply Current	ICOFF	VCC = $3.5V$, ENB = $0V$ RT = build in	_	_	0.1	μΑ
Supply Current (Excluding Inductor Current)	IC	VCC = ENB = 3.5V RT = build in	_	0.65	1.0	mA

Block Diagram

Pin Description

Vcc
ENB
GND
NC
NC
CIL
ELD
NC
NC
NC

<u>MIP826</u>

CMOS Type

Electro Luminescence Driver

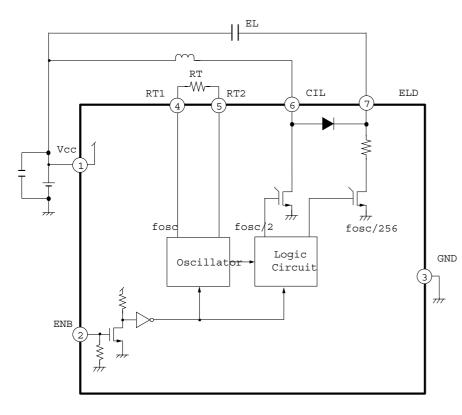
Absolute Maximum Ratings (Ta = $25 \pm 3 \circ C$)

Parameter	Symbol	Rating	Unit
Supply Voltage (VCC)	Vcc	-0.5 to 3.5	V
Input Voltage (ENB)	VENB	-0.5 to VCC+0.5	v
Output Voltage (CIL)	VCIL	-0.5 to 200	v
Output Voltage (ELD)	VELD	-0.5 to 200	V
Output Current (CIL)	ICIL *1	600	mA
Output Current (ELD)	Ield	50	mA
Power Dissipation	PD	120	mW
Operating Ambient Temperature	Topr	-20 to +70	°C
Operating Junction Temperature	Tch	-20 to +125	°C
Storage Temperature	Tstg	-55 to +125	°C

*1 : The saturation current of MOSFET for set-up coil.

■ Electrical Characteristics (Ta = 25 ± 3 °C)

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
[Operatin	g Condition]						
Supply V	Voltage (VCC)	Vcc		1.2	2.5	3.5	V
High Le	vel Input Voltage (ENB)	VIH	VCC = 1.2 to 3.5V	1.0	_	VCC	V
Low Lev	vel Input Voltage (ENB)	VIL	VCC = 1.2 to 3.5V	0	_	0.3	V
[Output]							
Inductor	Output Voltage	VDSS-CIL	$ENB = 0V, IDS = 20\mu A$	200	_	_	V
Output	Output Current	IDS-CIL	$V_{DS} = 5V$	_	350	_	mA
(CIL)	Output ON-State Resistance	RON-CIL	ID = 5mA	_	8.0	12	Ω
	Output OFF-Leakage Current	IDSS-CIL	ENB = 0, VDS = 160V	-	_	10	μΑ
EL	Output Voltage	VDSS-ELD	$ENB = 0V, IDS = 20\mu A$	200	_	_	V
Output	Output Current	IDS-ELD	VDS = 25V	4	10	_	mA
(ELD)	Output ON-State Resistance	Ron-eld	ID = 5mA	-	3.0	3.5	kΩ
	Output OFF-Leakage Current	IDSS-ELD	ENB = 0, $VDS = 160V$	_	_	10	μA
Diode	Reverse Current	IR	VELD = 200V, VCIL = 0V	_	-	1	μA
Diode	Forward Voltage	VF	ICIL = 100mA , Veld = 0V	_	-	1.4	V


MIP826

Electrical Characteristics (Ta = $25 \pm 3 \circ C$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Oscillator]						
Oscillator output Frequency	fosc	VCC = ENB = 2.5V, RT = 330k Ω	100	118	136	kHz
Inductor Frequency (CIL)	fcoil	VCC = ENB = 2.5V, RT = 330k Ω	50	59	68	kHz
Inductor Duty Cycle (CIL)	Dcoil	VCC = ENB = 2.5V, RT = 330k Ω	70	75	80	%
EL Frequency (ELD)	fel	VCC = ENB = 2.5V, RT = 330k Ω	390	460	530	Hz
EL Duty Cycle (ELD)	Del	VCC = ENB = 2.5V, RT = 330k Ω	20	25	30	%

Quiescent Supply Current	ICOFF	VCC = 3.5V, ENB = 0V $RT = 330k\Omega$	_	_	100	μA
Quiescent Supply Current	ICOFF	VCC = $3.5V$, ENB = $0V$ RT = $330k\Omega$	_	_	50	μA
Supply Current (Excluding Inductor Current)	IC	$V_{CC} = ENB = 3.5V$ $RT = 330k\Omega$	_	0.65	1.0	mA

Block Diagram

Pin Description

_	
1	Vcc
2	ENB
3	GND
4	RT1
5	RT2
6	CIL
7	ELD
8	NC
9	NC
10	NC

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this book is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.

- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this book may be reprinted or reproduced by any means without written permission from our company.

If you have any inquiries or questions about this document or our semiconductor products, please contact one of our sales offices listed on the back or Semiconductor Company's Sales Department.

Precautions on the Sales of IPDs

- 1) The sale and/or the export of IPD products to any customer or customers located in any country other than Japan is expressly prohibited by the Agreement made and executed by and between Power Integrations, Inc. and Matsushita Electronics Corporation.
- 2) IPD products purchased from Matsushita Electric Industrial Co., Ltd. or its authorized agents, hereinafter referred to as MATSUSHITA, shall be used only for production purposes by those parties who have duly purchased IPD products. Those who have purchased IPD products shall not use such IPD products in unmodified form for re-sale, loan, or sample shipment for evaluation purposes to any other parties.
- 3) If a party who has duly purchased IPD products subcontracts its production to any other parties, including its subsidiaries or any other third parties inside and/or out of Japan, and the IPD products are consigned to such subcontracting parties thereat, such party is obligated to monitor and control the quantity of IPD products to prevent any of the aforementioned re-sale, loan or sample shipments from taking place.
- 4) In the event that any actual or threatened breach or violation of any of the above mentioned 1, 2, or 3, has occurred or is about to occur, MATSUSHITA will hold all shipments of IPD products and may request the party alleged to be responsible for such occurrence for necessary documentation describing the status of its end-users and/or distribution channels. Note) There is no restriction on the product types MIP501 to 511, MIP704 to 709 and MIP805.

Attached table "IPD availability by customer"

	Parts No.		Able to supply	Disable to supply	Application
MIP13* MIP14* MIP15* MIP16*	MIP17* MIP18* MIP01** MIP02**	MIP2** MIP30*	Domestic Japanese companies Japanese companies in Asia (50% or more owned)	European and American companies Local Asian companies Other local companies	IPD for power supply
MIP10* MIP11* MIP803/MIP	804/MIP806		Domestic Japanese companies Japanese companies in Asia (50% or more owned)	European and American companies† Local Asian companies† Other local companies†	IPD for power supply IPD for EL drive
MIP501 to M MIP704 to M MIP805			No restrictions in terms of contract	No restrictions in terms of contract	IPD for lamp/Power supply IPD for EL power supply IPD for DC/AC converter

Note) †: Sales is possible with prior consent of Power Integrations, Inc.

• If you have any inquiries about sales, contact Corporate Sales Division, Semiconductor company, Matsushita Electric Industrial Co., Ltd.

National No.6 Bldg., 1-1-30, Shiba Daimon, Minato-ku, Tokyo, 105-8586 Japan Tel: 03-3459-9270