RENESAS
 HD74ALVC1G66
 Analog Switch

REJ03D0125-0300Z

Description

The HD74ALVC1G66 has an analog switch in a 5 pin package. Switch section has its enable input control (C). High-level voltage applied to C turns on the switch section. Applications include signal gating, chopping, modulation, or demodulation (modem), and signal multiplexing for analog to digital and digital to analog conversion systems. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- Supply voltage range : 1.2 to 3.6 V

Operating temperature range : -40 to $+85^{\circ} \mathrm{C}$

- Control input $\mathrm{V}_{\mathrm{IH}}($ Max. $)=3.6 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 3.6 V$)$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity $)$
HD74ALVC1G66VSE	VSON-5 pin	TNP-5DV	VS	$\mathrm{E}(3,000 \mathrm{pcs} / \mathrm{reel})$

Outline and Article Indication

Function Table

Control	Switch
L	OFF
H	ON
$\mathrm{H}:$	High level
$\mathrm{L}:$	Low level

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	V_{CC}	-0.5 to 4.6	V	
Input voltage range ${ }^{* 1}$	$\mathrm{~V}_{\mathrm{I}}$	-0.5 to 4.6	V	
${\text { Output voltage range }{ }^{* 1,2}}^{\text {Onput clamp current }}$	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output $: \mathrm{H}$ or L
Output clamp current	I_{KK}	-50	mA	$\mathrm{~V}_{\mathrm{I}}<0$
Continuous output current	l_{OK}	± 50	mA	$\mathrm{~V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
Continuous current through V_{CC} or GND	I_{O}	± 50	mA	$\mathrm{~V}_{\mathrm{O}}=0$ to V_{CC}
Maximum power dissipation at Ta $=25^{\circ} \mathrm{C}$ (in still air) ${ }^{* 3}$	P_{T}	± 100	mA	
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	1.2	3.6	V	
Input voltage range	V_{I}	0	3.6	V	
Input / output voltage range	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
Input transition rise or fall rate	$\Delta \mathrm{t} / \Delta \mathrm{V}$	0	20	$\mathrm{~ns} / \mathrm{V}$	$\mathrm{V}_{\mathrm{CC}}=1.2$ to 2.7 V
		0	10		$\mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$
Operating free-air temperature	Ta	-40	85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

Item	Symbol	Vcc (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Ta=-40 to $85^{\circ} \mathrm{C}$			Unit	Test conditions
			Min	Typ	Max	Min	Typ	Max		
Input voltage	V_{IH}	1.2	-	-	-	$\mathrm{V}_{C C} \times 0.75$	-	-	V	Control input only
		1.4 to 1.6	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-		
		1.65 to 1.95	-	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	-		
		2.3 to 2.7	-	-	-	1.7	-	-		
		3.0 to 3.6	-	-	-	2.0	-	-		
	$\overline{\mathrm{V} \text { IL }}$	1.2	-	-	-	-	-	$\mathrm{V}_{\text {cc }} \times 0.25$		
		1.4 to 1.6	-	-	-	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$		
		1.65 to 1.95	-	-	-	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$		
		2.3 to 2.7	-	-	-	-	-	0.7		
		3.0 to 3.6	-	-	-	-	-	0.8		
On-state switch resistance	RON	1.2	-	15	-	-	-	-	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \end{aligned}$
			-	27	-	-	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=1.2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \end{aligned}$
		1.4	-	11	25	-	-	30		$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V}, \\ & \mathrm{I}_{0}=2 \mathrm{~mA} \end{aligned}$
			-	20	35	-	-	40		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=1.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \end{aligned}$
		1.65	-	9	17	-	-	20		$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V}, \\ & \mathrm{I}_{0}=4 \mathrm{~mA} \end{aligned}$
			-	16	27	-	-	30		$\begin{aligned} & \mathrm{V}_{1}=1.65 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \end{aligned}$
		2.3	-	7	10	-	-	12		$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V}, \\ & \mathrm{I}_{0}=8 \mathrm{~mA} \end{aligned}$
			-	12	18	-	-	20		$\begin{aligned} & \hline \mathrm{V}_{1}=2.3 \mathrm{~V}, \\ & \mathrm{I}=8 \mathrm{~mA} \end{aligned}$
		3.0	-	6	8.5	-	-	9		$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{aligned}$
			-	10	13.5	-	-	14.5		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{aligned}$
Peak on resistance	Ron (p)	1.2	-	300	-	-	-	-	Ω	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$
		1.4	-	135	250	-	-	350		$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$
		1.65	-	60	110	-	-	150		$\mathrm{l}=4 \mathrm{~mA}$
		2.3	-	19	30	-	-	35		$\mathrm{l}=8 \mathrm{~mA}$
		3.0	-	12	18	-	-	20		$\mathrm{l} \mathrm{O}=24 \mathrm{~mA}$

Electrical Characteristics (cont)

Item	Symbol	Vcc (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$			Unit	Test conditions
			Min	Typ	Max	Min	Typ	Max		
Off-state switch leakage current	$\mathrm{I}_{\text {S (OFF) }}$	3.6	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \\ & \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$
On-state switch leakage current	$\mathrm{IS}_{\text {(} \mathrm{ON})}$	3.6	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or }$ GND $V_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}}$
Input current	I_{IN}	0 to 3.6	-	-	± 0.1	-	-	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { or }$ GND
Quiescent supply current	Icc	3.6	-	-	-	-	-	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$
Control input capacitance	$\mathrm{C}_{1 \mathrm{C}}$	-	-	3.5	-	-	-	-	pF	
Switch terminal capacitance	$\mathrm{C}_{\text {IN / OUT }}$	-	-	5.0	-	-	-	-	pF	
Feed through capacitance	$\mathrm{C}_{\text {In-out }}$	-	-	0.4	-	-	-	-	pF	

Switching Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	$\mathrm{t}_{\mathrm{PLH}}$	-	0.4	-	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
Enable time	t_{PH}							
	t_{ZH}	-	5.0	-	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
Disable time	t_{HZ}	-	4.5	-	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN

$\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	-	-	0.3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$	2.0	-	6.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	2.0	-	6.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	C	IN/OUT or OUT/IN

$\mathrm{V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time *	$\begin{aligned} & \hline \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	-	-	0.48	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$	1.5	-	5.0	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	C	IN/OUT or OUT/IN
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	1.5	-	5.0	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	C	IN/OUT or OUT/IN

Switching Characteristics (cont)

$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	$t_{\text {PLH }}$ $t_{\text {PHL }}$	-	-	0.35	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
Enable time	t_{ZH}	1.0	-	4.0	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	C	IN/OUT or OUT/IN
	t_{ZL}							

$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Test conditions	FROM (Input)	то (Output)
Propagation delay time * ${ }^{*}$	$\overline{\text { tPLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	-	-	0.3	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	IN/OUT or OUT/IN	OUT/IN or IN/OUT
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{tzz}^{2} \end{aligned}$	1.0	-	3.0	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	C	IN/OUT or OUT/IN
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{tzz}} \\ & \mathrm{t}_{\mathrm{Lz}} \end{aligned}$	1.0	-	3.0	ns	$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$	C	IN/OUT or OUTIN

Note: 1. The propagation delay time is calculated by the RC (on-resistance and load capacitance) time constant.

Operating Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\right)$

Item	Symbol	$\mathbf{V}_{\mathbf{C c}}(\mathbf{V})$	Min	Typ	Max	Unit	Test conditions
Power dissipation	C $_{\text {PD }}$	1.5	-	4.5	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
capacitance		1.8	-	4.5	-		
		2.5	-	5.0	-		
		3.3	-	6.0	-		

Test Circuit

R_{ON}

$\mathrm{I}_{\mathrm{S}}($ off $), \mathrm{I}_{\mathrm{S}}$ (on)

- $\mathrm{t}_{\text {PLH }} \mathrm{t}_{\mathrm{PHL}}$

Symbol	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$,		
$1.5 \pm 0.1 \mathrm{~V}$		$\mathrm{~V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V} \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=$$2.5 \pm 0.2 \mathrm{~V}$, $3.3 \pm 0.3 \mathrm{~V}$
:---:			
R_{L}			
$2.0 \mathrm{k} \Omega$			
$1.0 \mathrm{k} \Omega$			
C_{L}			

Symbol	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$, $1.5 \pm 0.1 \mathrm{~V}$, $1.8 \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	2.0 ns	2.5 ns	2.5 ns
$\mathrm{~V}_{\mathrm{IH}}$	V_{CC}	V_{CC}	2.7 V
$\mathrm{~V}_{\text {ref }}$	50%	50%	1.5 V

- $\mathrm{t}_{\mathrm{ZH}}, \mathrm{t}_{\mathrm{ZL}} / \mathrm{t}_{\mathrm{HZ}} \mathrm{LZ}_{\mathrm{LZ}}$

	S1		S2	
Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, \\ & 1.5 \pm 0.1 \mathrm{~V}, \\ & 1.8 \pm 0.15 \mathrm{~V}, \\ & 2.5 \pm 0.2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {CC }}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, \\ 1.5 \pm 0.1 \mathrm{~V}, \\ 1.8 \pm 0.15 \mathrm{~V}, \\ 2.5 \pm 0.2 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\text {CC }}=3.3 \pm 0.3 \mathrm{~V}$
$\mathrm{t}_{\mathrm{Hz}} / \mathrm{t}_{\text {zH }}$	V_{CC}	V_{CC}	GND	GND
$\mathrm{t}_{\mathrm{Hz}} / \mathrm{t}_{\mathrm{zH}}$	GND	GND	$\mathrm{V}_{\mathrm{CC}} \times 2$	6.0 V

Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, \\ \\ 1.5 \pm 0.1 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\text {CC }}=1.8 \pm 0.15 \mathrm{~V}$	$\begin{array}{r} \mathrm{V}_{\mathrm{cc}}=2.5 \pm 0.2 \mathrm{~V}, \\ 3.3 \pm 0.3 \mathrm{~V} \end{array}$
R_{L}	$2.0 \mathrm{k} \Omega$	$1.0 \mathrm{k} \Omega$	500Ω
C_{L}	15 pF	30 pF	30 pF

Symbol		$\mathrm{V}_{\text {CC }}=1.8 \pm 0.15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	2.0 ns	2.0 ns	2.5 ns	2.5 ns
V_{H}	V_{cc}	V_{cc}	V_{cc}	2.7 V
$\mathrm{V}_{\text {ref }}$	50\%	50\%	50\%	1.5 V
$\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}-}-0.15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OL}+}+0.15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\text {OH- }}-0.15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V} \end{aligned}$

$\mathrm{C}_{\text {IN/OUT }}, \mathrm{C}_{\text {In-out }}$

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

