SN74HC4066 QUADRUPLE BILATERAL ANALOG SWITCH

SCLS325G - MARCH 1996 - REVISED JULY 2003

- Wide Operating Voltage Range of 2 V to 6 V
- Typical Switch Enable Time of 18 ns
- Low Power Consumption, 20-μA Max I_{CC}
- Low Input Current of 1 μA Max
- High Degree of Linearity
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State Impedance . . .
 50-Ω TYP at V_{CC} = 6 V
- Individual Switch Controls

D, DB, N, NS, OR PW PACKAGE (TOP VIEW) 14 🛮 V_{CC} 1A 1B 🛛 13 1 1C 2B **∏** 3 12 AC 11 4A 2A 🛮 4 2C 3C [6 9 3B GND [8∏ 3A

description/ordering information

The SN74HC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 6 V (peak) to be transmitted in either direction.

Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.

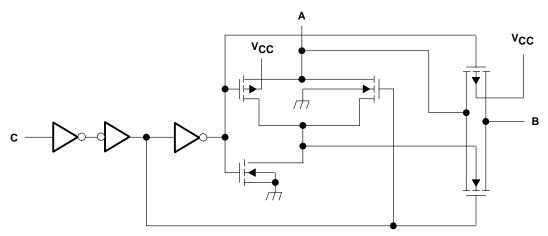
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

TA	PACK	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	SN74HC4066N	SN74HC4066N
		Tube of 50	SN74HC4066D	
	SOIC - D	Reel of 2500	SN74HC4066DR	HC4066
		Reel of 250	SN74HC4066DT	
-40°C to 85°C	SOP – NS	Reel of 2000	SN74HC4066NSR	HC4066
	SSOP – DB	Reel of 2000	SN74HC4066DBR	HC4066
		Tube of 90	SN74HC4066PW	
	TSSOP – PW	Reel of 2000	SN74HC4066PWR	HC4066
		Reel of 250	SN74HC4066PWT	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each switch)


INPUT CONTROL (C)	SWITCH
L	OFF
Н	ON

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

logic diagram, each switch (positive logic)

One of Four Switches

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)		–0.5 V to 7 V
Control-input diode current, I_1 ($V_1 < 0$ or $V_1 > V_0$	cc)	±20 mA
I/O port diode current, I_1 ($V_1 < 0$ or $V_{1/O} > V_{CC}$)		
On-state switch current ($V_{I/O} = 0$ to V_{CC})		±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ _{JA} (see Note 2)	: D package	86°C/W
	DB package	96°C/W
	N package	80°C/W
	NS package	76°C/W
	PW package	113°C/W
Storage temperature range, T _{stq}		. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to ground unless otherwise specified.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS325G - MARCH 1996 - REVISED JULY 2003

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		2†	5	6	V	
V _{I/O}	I/O port voltage		0		VCC	V	
		V _{CC} = 2 V	1.5		VCC		
VIН	High-level input voltage, control inputs	V _{CC} = 4.5 V	3.15		VCC	V	
		VCC = 6 V	4.2		Vcc		
		V _{CC} = 2 V	0		0.3		
VIL	Low-level input voltage, control inputs	V _{CC} = 4.5 V	0		0.9	V	
		V _{CC} = 6 V	0		1.2		
		V _{CC} = 2 V			1000		
Δt/Δν	Input transition rise/fall time	V _{CC} = 4.5 V			500	ns	
				400			
TA	Operating free-air temperature		-40		85	°C	

T With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	\ , \	T	\ = 25°C	;	MIN	MAX	UNIT
	PARAMETER		TEST CONDITIONS	VCC	MIN	TYP	MAX	IVIIIN	WAX	UNIT
				2 V		150				
ron On-state switch resistance		$I_T = -1$ mA, $V_I = 0$ to V_{CC} , $V_C = V_{IH}$ (see Figure 1)	4.5 V		50	85		106	Ω	
			VC = VIH (See Figure 1)	6 V		30				
						320				
r _{on(p)}	n(p) Peak on-state resistance		$V_I = V_{CC}$ or GND, $V_C = V_{IH}$, $I_T = -1$ mA	4.5 V		70	170		215	Ω
			6 V		50					
Ц	Control input current		$V_C = 0$ or V_{CC}	6 V		±0.1	±100		±1000	nA
I _{soff}	Off-state switch leakage current		$V_I = V_{CC}$ or 0, $V_O = V_{CC}$ or 0, $V_C = V_{IL}$ (see Figure 2)	6 V			±0.1		±5	μΑ
I _{son}	On-state switch leaka	ge current	V _I = V _{CC} or 0, V _C = V _{IH} (see Figure 3)	6 V			±0.1		±5	μΑ
Icc	Supply current		$V_I = 0$ or V_{CC} , $I_O = 0$	6 V			2		20	μΑ
C.	lanut conscitores	A or B		5 V		9				~F
Ci	Input capacitance	С]	o v		3	10		10	pF
Cf	Feed-through capacitance	A to B	V _I = 0			0.5				pF
Со	Output capacitance	A or B		5 V		9				pF

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74HC4066 QUADRUPLE BILATERAL ANALOG SWITCH

SCLS325G - MARCH 1996 - REVISED JULY 2003

switching characteristics over recommended operating free-air temperature range

BA	RAMETER	FROM	то	TEST	Vaa	Τ _Δ	(= 25°C	;	MIN	MAX	UNIT
FA	RAMETER	(INPUT)	(OUTPUT)	CONDITIONS	Vcc	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
Ι.					2 V		10	60		75	
t _{PLH} ,	Propagation delay time	A or B	B or A	B or A $C_L = 50 \text{ pF}$ (see Figure 4)	4.5 V		4	12		15	ns
'PHL	dolay iiiilo			(See Figure 1)	6 V		3	10		13	
				$R_1 = 1 k\Omega$	2 V		70	180		225	
tPZH, tPZL	Switch turn-on time	С	A or B	$C_{L} = 50 pF$	4.5 V		21	36		45	ns
, PZL	tarri ori timo			(see Figure 5)	6 V		18	31		38	
				A or B $ \begin{array}{c} R_L = 1 \ k\Omega, \\ C_L = 50 \ pF \\ (\text{see Figure 5}) \end{array} $	2 V		50	200		250	
^t PLZ [,] ^t PHZ	Switch turn-off time	ime C	A or B		4.5 V		25	40		50	ns
, PRZ	tarri on time				6 V		22	34		43	
	Control			$C_L = 15 \text{ pF},$ $R_I = 1 \text{ k}\Omega,$	2 V		15				
fĮ	input	С	A or B	$V_C = V_{CC}$ or GND,	4.5 V		30				MHz
	frequency			VO = VCC/2 (see Figure 6)	6 V		30				
	Control	C	A or B	$C_L = 50 \text{ pF},$ $R_{\text{in}} = R_L = 600 \Omega,$	4.5 V		15				mV
	noise	eed-through C A or B oise		$V_C = V_{CC}$ or GND, $f_{in} = 1$ MHz (see Figure 7)	6 V		20	·		·	(rms)

operating characteristics, V_{CC} = 4.5 V, T_A = 25°C

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per gate	$C_L = 50 \text{ pF},$	f = 1 MHz	45	pF
	Minimum through bandwidth, A to B or B to A † [20 log (VO/VI)] = -3 dB	$C_L = 50 \text{ pF},$ $V_C = V_{CC}$	$R_L = 600 \Omega$, (see Figure 8)	30	MHz
	Crosstalk between any switches‡	$C_L = 10 \text{ pF},$ $f_{in} = 1 \text{ MHz}$	$R_L = 50 \Omega$, (see Figure 9)	45	dB
	Feed through, switch off, A to B or B to A [‡]	$C_L = 50 \text{ pF},$ $f_{in} = 1 \text{ MHz}$	$R_L = 600 \Omega$, (see Figure 10)	42	dB
	Amplitude distortion rate, A to B or B to A	C _L = 50 pF, f _{in} = 1 kHz	R_L = 10 kΩ, (see Figure 11)	0.05%	

 $[\]uparrow$ Adjust the input amplitude for output = 0 dBm at f = 1 MHz. Input signal must be a sine wave.

 $[\]ddagger$ Adjust the input amplitude for input = 0 dBm at f = 1 MHz. Input signal must be a sine wave.

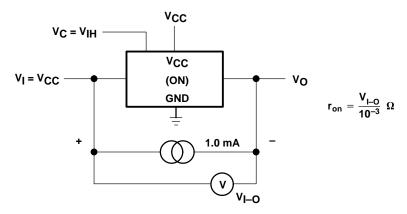


Figure 1. On-State Resistance Test Circuit

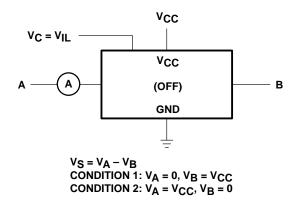


Figure 2. Off-State Switch Leakage-Current Test Circuit

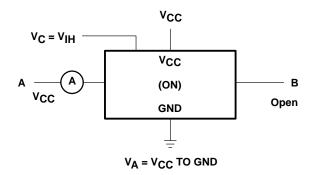


Figure 3. On-State Leakage-Current Test Circuit

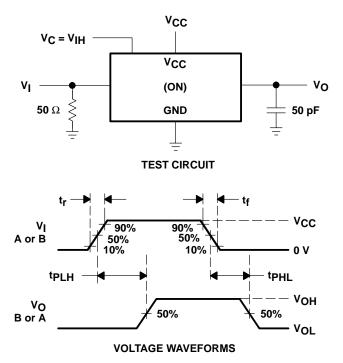
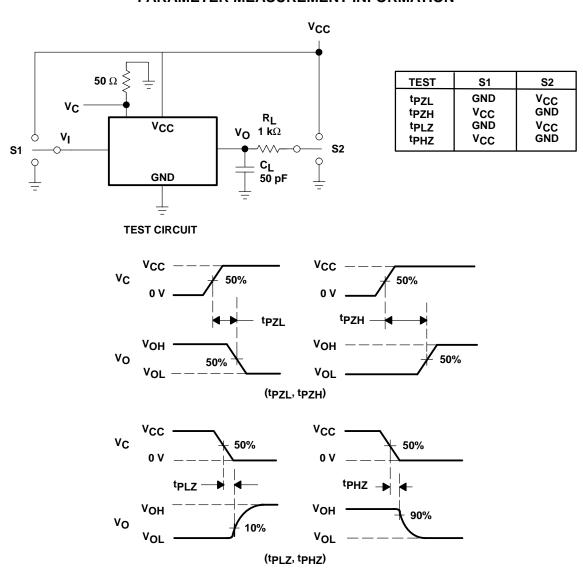



Figure 4. Propagation Delay Time, Signal Input to Signal Output

VOLTAGE WAVEFORMS

Figure 5. Switching Time (t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}), Control to Signal Output

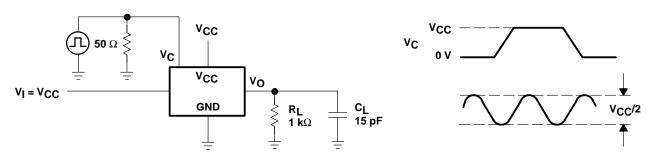


Figure 6. Control-Input Frequency

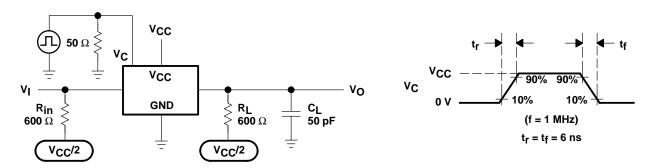


Figure 7. Control Feed-Through Noise

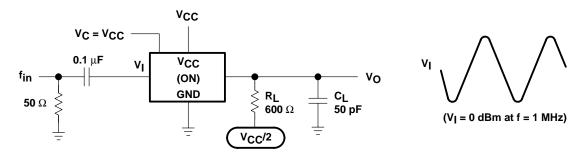


Figure 8. Minimum Through Bandwidth

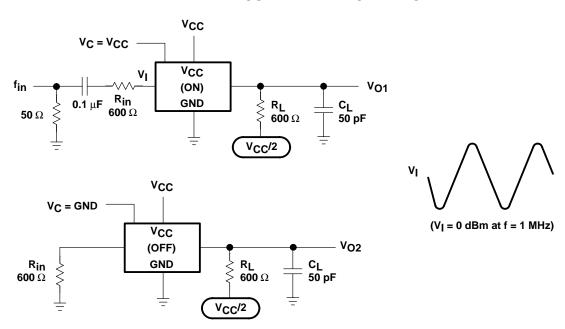


Figure 9. Crosstalk Between Any Two Switches

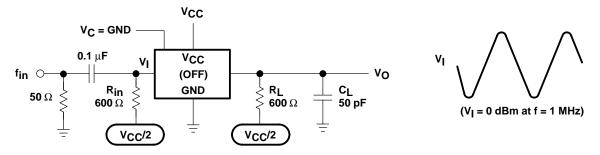


Figure 10. Feed Through, Switch Off

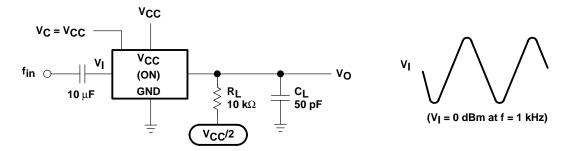


Figure 11. Amplitude-Distortion Rate

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74HC4066D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DBLE	OBSOLETE	SSOP	DB	14		TBD	Call TI	Call TI
SN74HC4066DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DTE4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DTG4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74HC4066NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74HC4066NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
SN74HC4066PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWTE4	ACTIVE	TSSOP	PW	14	250	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

18-Sep-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
					no Sb/Br)		
SN74HC4066PWTG4	ACTIVE	TSSOP	PW	14 250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

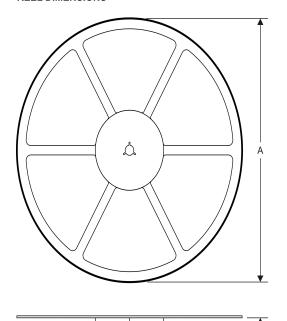
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

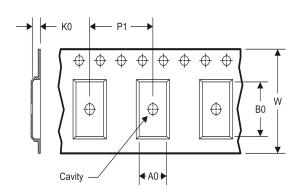
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

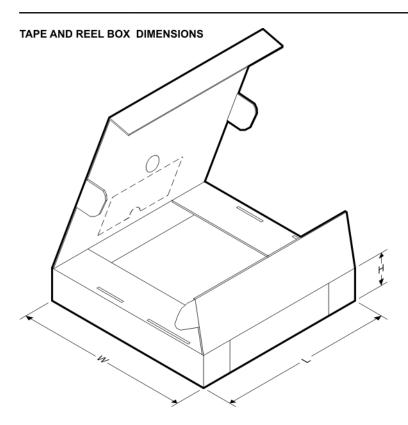

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC4066DBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74HC4066DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74HC4066DT	SOIC	D	14	250	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74HC4066NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74HC4066PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC4066PWT	TSSOP	PW	14	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

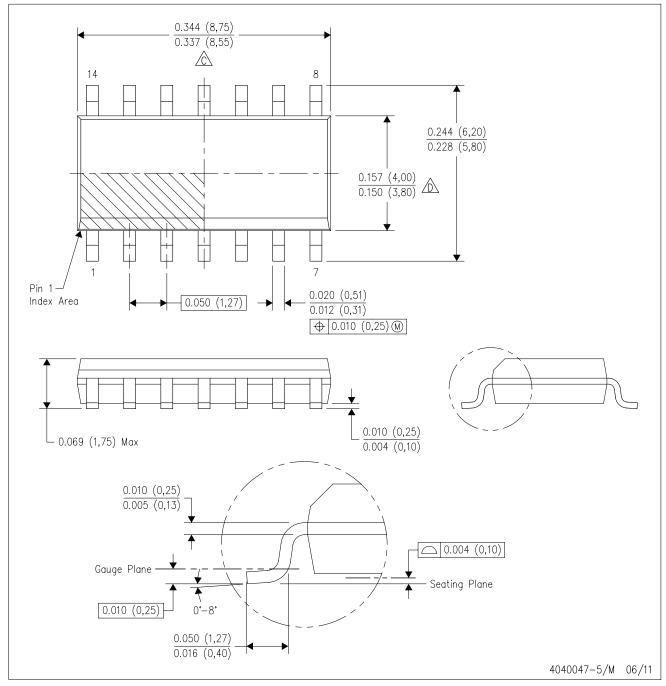
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC4066DBR	SSOP	DB	14	2000	367.0	367.0	38.0
SN74HC4066DR	SOIC	D	14	2500	367.0	367.0	38.0
SN74HC4066DT	SOIC	D	14	250	367.0	367.0	38.0
SN74HC4066NSR	SO	NS	14	2000	367.0	367.0	38.0
SN74HC4066PWR	TSSOP	PW	14	2000	367.0	367.0	35.0
SN74HC4066PWT	TSSOP	PW	14	250	367.0	367.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

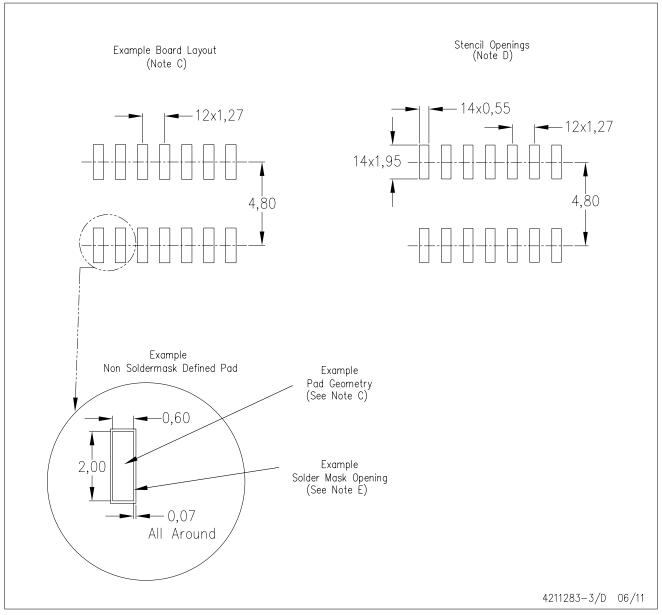
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

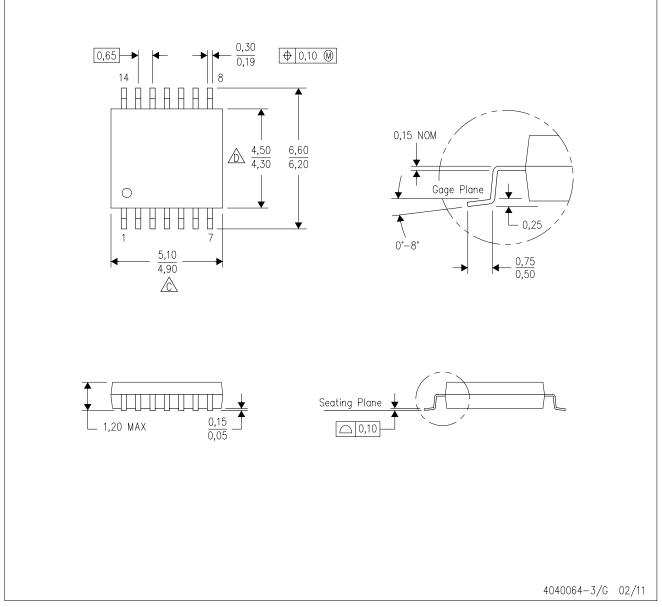
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

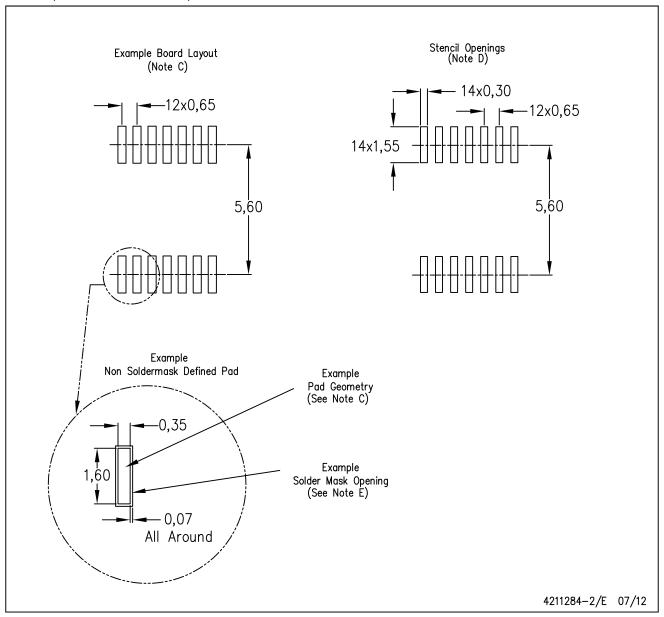
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

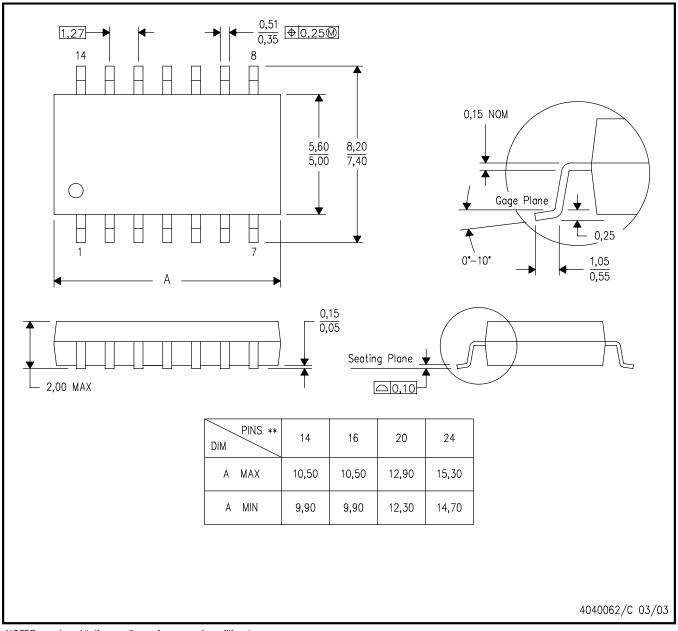


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

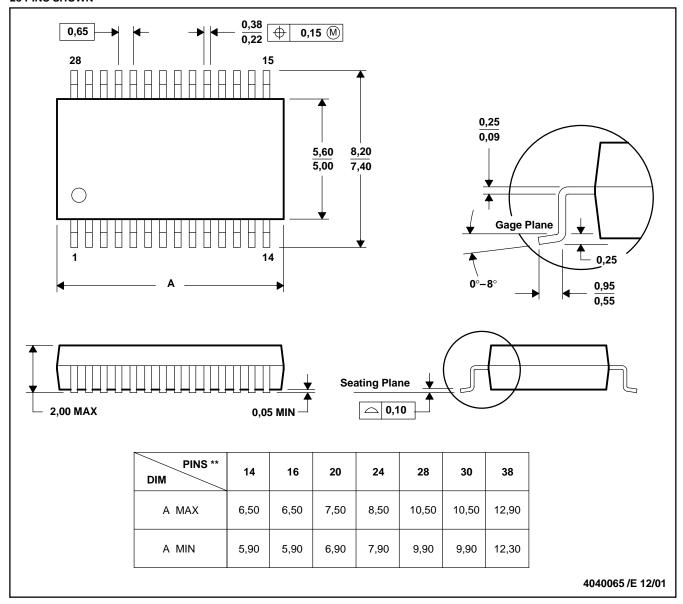


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

www.ti.com/communications

www.ti.com/consumer-apps

www.ti.com/computers

www.ti.com/energy

www.ti.com/industrial

www.ti.com/medical

www.ti.com/security

Products		Applications
Audia	ununu ti com/ou dio	Automotivo on

Wireless Connectivity

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals **DLP® Products** Consumer Electronics www.dlp.com DSP dsp.ti.com **Energy and Lighting** Clocks and Timers www.ti.com/clocks Industrial Interface interface.ti.com Medical Logic logic.ti.com Security Power Mgmt Space, Avionics and Defense power.ti.com

www.ti.com/wirelessconnectivity

www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap **TI E2E Community** e2e.ti.com