Power MOSFET

-8.0 V, -1.4 A, Single P-Channel, SC-70

Features

- Leading Trench Technology for Low R_{DS(on)} Extending Battery Life
- −1.8 V Rated for Low Voltage Gate Drive
- SC-70 Surface Mount for Small Footprint (2 x 2 mm)
- Pb-Free Package is Available

Applications

- High Side Load Switch
- Charging Circuit
- Single Cell Battery Applications such as Cell Phones, Digital Cameras, PDAs, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

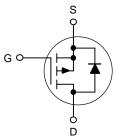
·	· · · · · · · · · · · · · · · · · · ·				
Parame	Symbol	Value	Units		
Drain-to-Source Voltage	V_{DSS}	-8.0	V		
Gate-to-Source Voltage	V_{GS}	±8.0	V		
Continuous Drain	Steady	T _A = 25°C	I _D	-1.4	Α
Current (Note 1)	State	T _A = 70°C		-1.1	
	t ≤ 5 s	T _A = 25°C		-1.5	Α
Power Dissipation (Note 1)			P _D	0.29	W
	t ≤ 5 s			0.33	W
Pulsed Drain Current	I _{DM}	-3.0	Α		
Operating Junction and S	T _J , T _{STG}	–55 to 150	ç		
Source Current (Body Dio	I _S	-0.46	Α		
Lead Temperature for Sol (1/8" from case for 10	TL	260	°C		

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	430	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	375	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

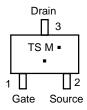
www.D1.toSurfaceLmounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
	65 m Ω @ -4.5 V	
-8.0 V	78 mΩ @ –2.5 V	-1.4 A
	117 mΩ @ –1.8 V	


P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SC-70/SOT-323 CASE 419 STYLE 8

TS = Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

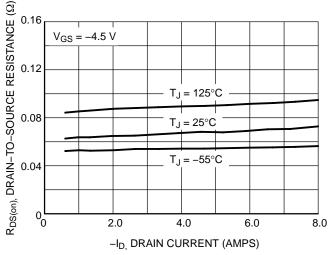
Device	Package	Shipping [†]
NTS2101PT1	SOT-323	3000/Tape & Reel
NTS2101PT1G	SOT-323 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D} = -250 \mu\text{A}$		-8.0	-20		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -6.4 \text{ V}$	T _J = 25°C			-1.0	μΑ
		V _{DS} = -0.4 V	$T_J = 70^{\circ}C$			-5.0	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$	$S = \pm 8.0 \text{ V}$			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μA	-0.45	-0.7		V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V},$	I _D = −1.0 A		65	100	mΩ
		$V_{GS} = -2.5 \text{ V},$	I _D = -0.5 A		78	140	
		$V_{GS} = -1.8 \text{ V},$	$I_D = -0.3 \text{ A}$		117	210	
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -8.0 \text{ V}$			640		pF
Output Capacitance	C _{OSS}				120		
Reverse Transfer Capacitance	C _{RSS}				82		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5.0 \text{ V}, V_{DD} = -5.0 \text{ V},$ $I_D = -1.0 \text{ A}$			6.4		nC
Threshold Gate Charge	Q _{G(TH)}	I _D = −1.	0 A		0.7		1
Gate-to-Source Charge	Q _{GS}				1.0		-
Gate-to-Drain Charge	Q _{GD}				1.5		
SWITCHING CHARACTERISTICS (No	ote 3)		•			•	•
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -4.5 \text{ V}, V_{I}$	$_{DD} = -4.0 \text{ V},$		6.2		ns
Rise Time	t _r	$I_D = -1.0 \text{ A}, R_G = 6.2 \Omega$			15		
Turn-Off Delay Time	t _{d(OFF)}		•		26		
Fall Time	t _f				18		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		-0.62	-1.2	V
		$I_{S} = -0.3 \text{ A}$	T _J = 125°C		-0.51		7
Reverse Recovery Time	t _{RR}	$V_{GS} = 0$ V, $dI_{SD}/dt = 100$ A/ μ s, $I_{S} = -1.0$ A			23.4		ns
Charge Time	Ta				7.7		
Discharge Time	T _b				15.7		
Reverse Recovery Charge	Q _{RR}				9.5		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL ELECTRICAL CHARACTERISTICS

 $V_{DS} \ge -10 \text{ V}$ 6.0 4.0 2.0 $T_J = 125^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -55^{\circ}C$ 0 0.4 2.0 8.0 1.2 1.6 2.4 2.8 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

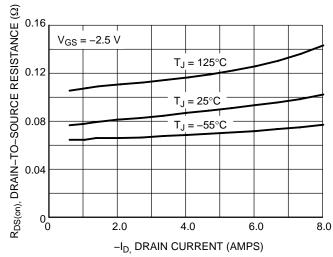
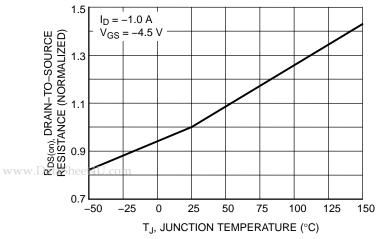



Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On–Resistance vs. Drain Current and Temperature

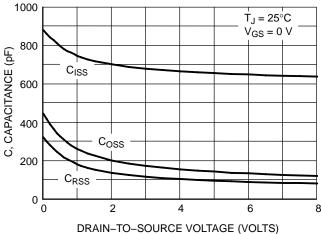


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL ELECTRICAL CHARACTERISTICS

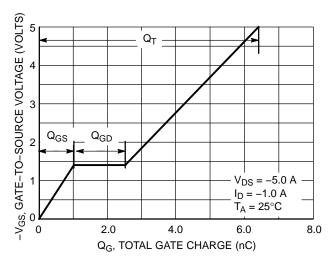
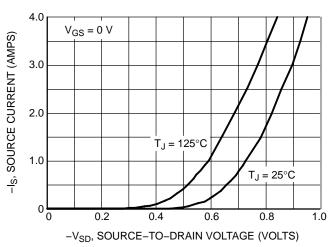
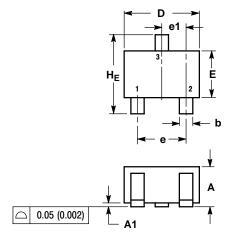
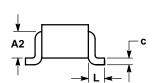


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Gate Charge


Figure 8. Diode Forward Voltage vs. Current

www.DataSheet4U.com

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE M

- DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982
- CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2	0.7 REF			0.028 REF			
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.10	2.20	0.071 0.083		0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BSC			
٦	0.425 REF			0.017 REF			
HF	2 00	2 10	2 40	0.079	0.083	0.095	

STYLE 8

PIN 1. GATE

2. SOURCE 3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative