

System Catalog 2012-12

Semiconductors for Power Supplies

SEMICONDUCTOR & STORAGE PRODUCTS

http://www.semicon.toshiba.co.jp/eng

Power Supply Circuit Types and Their Applications

Toshiba offers various semiconductor devices for power supply applications to meet a wide range of customer needs varying from low power to high power. These devices help to save energy and improve power efficiency.

Technical Trend of Switching Regulators

System Trend	Circuit Technology Trend	Requirements for Semiconductor Devices
Lower loss / higher efficiency	Use of synchronous rectification	Reduced Ron and improved speed of power MOSFETs Improved VF-IRRM tradeoffs of SBDs
Higher frequency	Transition from PWM switching to resonant and interleaved switching	Reduced input capacitance of power MOSFETs Improved VF-IRRM tradeoffs of SBDs
Smaller and thinner form factors	Dispersed power sources (modular design)	Thermally enhanced packages (WCSP, BGA)
Noise reduction Harmonic requirements	Active filter	PFC controller ICs
Safety standards	Isolation of control and power units	Photocouplers (reinforced insulation, reduced power consumption)
Load transient response	Improvement in high-frequency characteristics Parallel power sources Digital control	Improved output accuracy Wider input and output voltage ranges Digital controller ICs
Smart systems	Hot swap	MOSFETs with logic inputs ORing MOSFETs

Technical Trend of Linear Power Supplies (LDO Regulators)

System Trend	Circuit Technology Trend	Requirements for Semiconductor Devices
Lower loss	Lower circuit voltage	Low dropout voltage
Output voltage regulation	Higher output voltage accuracy	Low output noise voltage Circuit with fast load transient response High ripple rejection ratio Automatic output discharge Overcurrent protection circuit
Smaller form factor Thinner form factor	Smaller system size Dispersed power sources	Development of a ultra-small package Small packages Packages with electrodes on the bottom

Contents

Switching Power Supplies	4
AC-DC Elyback Power Supplies	4
AC DC Farward Davier Cupplies	5
AC-DC Forward Power Supplies	6
AC-DC Resonant Half-Bridge Power Supplies	0
Solar Inverters (Power Conditioning Subsystems (PCS))	7
DC-DC Converters	8
Linear Power Supplies	9
Power Supplies by Application	10
Wireless Power Transfer	10
Rechargeable Lithium-Ion Batteries	11
Product Overview	12
Devices for AC-DC Power Supply Applications	12
PFC Control ICs	12
Power MOSFETs for PFC Control and Switching Applications	13
Switching Power Transistors	14

	Power Transistors for MOS Gate Drivers	.14
	Transistor-Output Photocouplers	.14
	Schottky Barrier Diodes (SBDs) and High-Efficiency Diodes (HEDs).	.15
	Synchronous Rectification MOSFETs	.16
D	evices for DC-DC Converter Applications	.17
	Single-Output Buck DC-DC Converter ICs	.17
	Multiple-Output DC-DC Converter ICs	.18
	Digital Step-Down DC-DC Converter ICs	.18
	Rechargeable Lithium-Ion Battery Charger	.19
	Low-Voltage MOSFETs for DC-DC Converter Applications	.20
	Bipolar Power Transistors for self-Excited DC-DC Converter	
	Applications	.20
c	ther Devices for Power Supply Applications	.21
	Load Switch ICs	.21
	CMOS LDO Regulators	.22

Switching Power Supplies

AC-DC Flyback Power Supplies

Features

• AC-DC flyback power supplies have a very simple circuit configuration that consists of a minimal part count. They are suitable for low-power power supplies.

Application Examples

- Notebook PCs
 Chargers for portable products
- LCD adaptors
 PC peripherals
 - Standby power supplies and small adaptors

Power suppliesCircuit Example

Recommended Parts

Output Power (W)		Up to 10	10 to 20	20 to 50	50 to 100	
PFC Control	PFC Controller ICs		TB6819AFG			
PFC Control Switch	High-Voltage Power	VDSS = 500 V	TK3P50D, TK4A50D, TK4P50D	TK6A50D, TK7A50D, TK7P50D	TK8A50D, TK10A50D, TK11A50D	TK12A50D, TK13A50DA, TK13A50D
	MOSFETs	VDSS = 600 V	TK5Q60W**, TK5P60W**, TK5A60W**	TK6A60D, TK7P60W**, TK8A60W**	TK10A60D, TK6A60W**, TK7A60W**	TK10A60D, TK10A60W**, TK16A60W**
		VDSS = 600 V	TK5Q60W**, TK5P60W**, TK5A60W**	TK6A60D, TK7P60W**, TK8A60W**	TK10A60D, TK6A60W**, TK7A60W**	TK10A60D, TK10A60W**, TK16A60W**
	High-Voltage Power MOSFETs	VDSS = 650 V	TK3A65DA, TK4A65DA, TK5A65DA	TK5A65D, TK6A65D, TK7A65D	TK7A65D, TK8A65D	TK11A65D, TK12A65D, TK13A65D
Main Switch		VDSS = 900 V	TK1Q90A, TK1P90A, 2SK3301	2SK3564, 2SK3798	2SK3565, 2SK4014	2SK3799
	Bipolar Power Transistor	100-Vac input	2SC5548A, TTC008			
		200-Vac input	2SC6142, TTC012			
	Schottky Barrier Diode/ High-Efficiency	Output: Up to 3 V (VRRM = 30 V)	CUS10I30A, CRS10I30A, CRS10I30C	CRS20I30A, CRS20I30B, CMS20I30A	CRS30130A, CMS30130A	CLS01
		Output: Up to 5 V (VRRM = 40 V)	CUS10I40A, CRS10I40A, CRS10I40B	CRS20I40A, CRS20I40B, CMS20I40A	CMS30I40A	CLS02
		Output: Up to 12 V (VRRM = 60 V)	CUS04, CRS12, CRS13	CMS14	CLS03	
Secondary Rectification	Diode	Output: Up to 24 V (VRRM = 200 V)	CRH01, CMH04, CMH07	CMH01, CLH01, CLH05		
		Output: Up to 48 V (VRRM = 400 V)	CMH02, CMH05, CMH08	CLH03 CLH07		
	Synchronous Rectification MOSFET (Low-Voltage Power MOSFETs)	VDSS = 100 V				TK40A10N1, TK65A10N1, TK40E10N1, TK65E10N1
		VDSS = 120 V				TK56A12N1**, TK72A12N1**, TK56E12N1**, TK72E12N1**
Output Error Feedback	Photocouplers			TLP185, TLF	P291,TLP785	

AC-DC Forward Power Supplies

Features

• AC-DC forward power supplies with a relatively simple circuit configuration are widely used for 100-W to 500-W power supply applications. Forward power supplies have less ripple since the capacitor is continuously charged. Compared to flyback power supplies, they exhibit a higher transformer efficiency and thus can provide up to 500 W.

Application Examples

- Desktop PCs
 Power supplies for game consoles
- Multifunction printers
 Industrial power supplies

Circuit Example

Recommended Parts

Output Power (W)		Up to 100 100 to 150		150 to 200			
PFC Control	PFC Controller ICs			TB6819AFG			
PFC Control	High-Voltage Power	VDSS = 500 V	TK12A50D, TK13A50DA, TK13A50D	TK13A50D, TK15A50D	TK15A50D, TK15J50D		
Switch	MOSFETs	VDSS = 600 V	TK10A60D, TK10A60W**, TK16A60W**	TK15A60D, TK16J60W**, TK31A60W**	TK16J60W**, TK31A60W**		
Main Switch	High-Voltage Power	VDSS = 600 V	TK10A60D, TK10A60W**, TK16A60W**	TK15A60D, TK16J60W**, TK31A60W**	TK16J60W**, TK31A60W**		
Main Switch	MOSFETs	VDSS = 650 V	TK11A65D, TK12A65D, TK13A65D	TK13A65U, TK13J65U	TK17A65U, TK17J65U		
		VDSS = 60 V	TK30A06N1, TK30E06N1	TK40A06N1,TK40E06N1	TK58A06N1, TK58E06N1		
Secondary	Synchronous Rectification	VDSS = 80 V	TK35A08N1, TK35E08N1	TK46A08N1, TK46E08N1	TK72A08N1, TK72E08N1		
Rectification	(Low-Voltage Power MOSFETs)	VDSS = 100 V	TK34A10N1, TK34E10N1	TK40A10N1, TK40E10N1	TK65A10N1, TK65E10N1		
		VDSS = 120 V	TK32A12N1**, TK32E12N1**	TK42A12N1**, TK42E12N1**	TK56A12N1**, TK56E12N1**		
Output Error Feedback	Photocouplers		TLP185, TLP291,TLP785				

Switching Power Supplies

AC-DC Resonant Half-Bridge Power Supplies

Features

• Resonant half-bridge power supplies are suitable for relatively high-power power supply applications in the range of 150 W to 1 kW. The two transistors connected in series with the input supply voltage reduce the input voltage applied to the primary side of the transformer by half. This makes it possible to use Low-Voltage transistors.

Application Examples

- Power supplies for FPD TVs
- Desktop PCs
- Servers

Circuit Example

Recommended Parts

Output Power (W)		Up to 100	100 to 200	200 to 400	400 to 800	
PFC Control	PFC Controller ICs		TB68 ⁻	I9AFG	TB68	18FG
PFC Control	High-Voltage Power	VDSS = 500 V	TK12A50D, TK13A50DA, TK13A50D	TK15A50D, TK15J50D	TK20J50D	
Switch	MOSFETs	VDSS = 600 V	TK10A60D, TK10A60W**, TK16A60W**	TK16J60W**, TK31A60W**	TK31J60W**, TK39J60W**	TK39J60W**, TK62J60W**
Main Switch	High-Voltage Power	VDSS = 500 V	TK12A50D, TK13A50DA, TK13A50D	TK15A50D, TK15J50D	TK20J50D	
Main Switch	MOSFETs	VDSS = 600 V	TK10A60D, TK10A60W**, TK16A60W**	TK16J60W**, TK31A60W**	TK31J60W**, TK39J60W**	TK39J60W**, TK62J60W**
	Synchronous Rectification	VDSS = 60 V		TK40A06N1, TK40E06N1	TK58A06N1, TK58E06N1	TK100A06N1, TK100E06N1
Secondary		VDSS = 80 V		TK46A08N1, TK46E08N1	TK72A08N1, TK72E08N1	TK100A08N1, TK100E08N1
Rectification	(Low-Voltage Power MOSFETs)	VDSS = 100 V		TK40A10N1, TK40E10N1	TK65A10N1, TK65E10N1	TK100A10N1,TK100E10N1
		VDSS = 120 V		TK42A12N1**, TK42E12N1**	TK56A12N1**, TK56E12N1**	TK72A12N1**, TK72E12N1**
Output Error Feedback	Photocouplers			TLP185, TLF	291, TLP785	

Solar Inverters (Power Conditioning Subsystems (PCS))

Features

• A solar inverter, also known as a power conditioning subsystems (PCS), is a device used to convert DC power generated by solar panels to AC power for use by home appliances. Since the voltage from solar panels varies with sunshine conditions, it is boosted to a constant level first. It is then converted to AC power by using an inverter and then applied to the grid.

Circuit Example

Recommended Parts

Output Power (kW)			Up to 1.5	1.5 to 3	3 to 4.5	4.5 to 6		
Inverter Switch	High-Voltage Power MOSFETs	150-Vdc Input / 200-Vdc Input	TK39J60W** TK62J60W**					
	IGBT	100-Vac Input / 200-Vac Input		GT30J341				
Quarter Circuit	MCU for Inverter Control		TMPM370FYDFG, TMPM370FYFG, TMPM372FWUG TMPM373FWDUG, TMPM374FWUG TMPM376FDDFG, TMPM376FDFG TMPM377FYDFG **, TMPM377FYFG **					
Control Circuit	MCU for Voltage Booster Control		TMPM380FWFG, TMPM380FWDFG, TMPM380FYFG, TMPM380FYDFG, TMPM380FDFG**					
	MCU for Communication Control		TMPM369FDFG**, TMPM369FDXBG**, TMPM369FYFG**, TMPM369FYXBG**					
Voltage Booster	High-Voltage Power MOSFETs	Up to 300-Vdc Output / Up to 700-Vdc Output	TK39J60W** TK62J60W**					
Switch	IGBTs	Up to 300-Vdc Output	GT30J341, GT50JR22**					
FET Drivers	Photocouplers	0.6 to 6.0-A Peak Output	TLP701H, TLP351H, TLP155E	TLP701H, TLP351H, TLP155E	TLP700H, TLP352	TLP358H		

DC-DC Converters

DC-DC Converters (Non-Isolated)

Features

A DC-DC converter converts a direct current from one voltage level to another. While non-isolated DC-DC converters are primarily used for conversion in the 1-W to 30-W range, up to 100 W can be handled by adding a single MOSFET. Many DC-DC converters are deployed in cell phones and mobile devices that are becoming increasingly small, light and feature-rich.

Application Examples

- On-board DC-DC converters
- Power supplies for CPUs
 Regulator circuits
 Cell phones

VIN = 12 V

Recommended Parts

Circuit Example

Output Power (W)			Up to 10	10 to 30	30 to 50	50 to 100
DC-DC Conversion Low-Voltage Power MOSFETs VDSS = 30 V		ТРСС8067-Н, ТРСС8068-Н, ТРСС8065-Н	TPCA8065-H, TPCA8064-H, TPCA8059-H, TPCA8057-H	TPCA8064-H, TPCA8058-H, TPCA8057-H, TPCA8056-H	ТРСА8064-Н, ТРСА8056-Н, ТРСА8055-Н	
C	Output Current (A)		Up to 1	1 to 3	3 to 5	5 to 6.5
		VIN = 5 V		TCV7104FN, TCV7108FN*,	TCV7102AF*	TCV7103AF*, TCV7113F*

TCV7116FN*, TCV7117F*

TB7110F*, TB7106F

TB7107FN

	_		
DC-DC	Converters	(Isolated)	

DC-DC Converter

ICs

Features

DC-DC Conversion

Isolated DC-DC converters are widely used for applications in which there is a large difference in voltage between the primary and secondary sides of a transformer. Isolated forward converters and isolated full-bridge converters can handle up to 800 W. Most PC power supplies use an

isolated DC-DC converter.

Application Examples

On-board DC-DC converters

- Notebook PCs
- Power supplies for CPUs
- Regulator circuits
- Communications equipment

Recommended Parts

TB7109F*

Output Power (W)		Up to 100 Forward	Up to 200 Resonant Half-Bridge	Up to 400 Full-Bridge	Up to 800 Full-Bridge	
		VDSS = 60 V		TPH7R506NH, TPN7R506NH**, TPH5R906NH, TPH4R606NH	TPN22006NH**, TPH14006NH, TPN14006NH**	TPH7R506NH, TPH5R906NH, TPH4R606NH
DC-DC Conversion		VDSS = 80 V		TPH8R008NH**	TPN30008NH**, TPN13008NH**, TPH12008NH**	TPH8R008NH**
(Primary-Side Switch)	Low-Voltage Power MOSFETs	VDSS = 100 V		TPH8R80ANH**	TPN3300ANH**, TPN1600ANH**, TPH1400ANH**	TPH8R80ANH**
		$V_{\text{DSS}} = 150 \text{ V}$	TPHxxx0CNH**			
		$V_{\text{DSS}} = 200 \text{ V}$	TPHxxx0ENH**			
		VDSS = 250 V	TPHxxx0FNH**			
DC-DC Conversion (Secondary-Side Switch)		VDSS = 60 V	TPN22006NH**, TPH14006NH, TPN14006NH**	TPH14006NH, TPH7R506NH, TPN7R506NH**	TPN22006NH**, TPH14006NH, TPN14006NH**	TPH7R506NH, TPH5R906NH, TPH4R606NH
	Low-Voltage Power MOSFETs	VDSS = 80 V	TPN30008NH**, TPN13008NH**, TPH12008NH**	TPN13008NH**, TPH12008NH**, TPH8R008NH**	TPN30008NH**, TPN13008NH**, TPH12008NH**	TPH8R008NH**
		VDSS = 100 V	TPN3300ANH**, TPN1600ANH**, TPH1400ANH**	TPH1400ANH**, TPH8R80ANH**	TPN3300ANH**, TPN1600ANH,** TPH1400ANH**	TPH8R80ANH**

*: New products

Linear Power Supplies

Features

Linear power supplies are available in a wide range of packages from general-purpose SMV (SOT-25) to an ultra-small package with the industry's smallest form factor measuring 0.8 × 0.8 mm. Those in the SDFN4 and WCSP4 packages, which are most widely used for small portable applications, are offered with various current/voltage ratings and additional features.

Application Examples

Small portable devices

- Cell phones
 Portable audio
- Notebook PCs
 Digital still and video cameras

Circuit Example

Recommended Parts

Power Supply	Regulator Type	Series	Output	loυτ (mA)	Vout (V)	Automatic Output Discharge	Package
		TCR2ENxx*			1.0 to 3.6	0	SDFN4
		TCR4SxxWBG		200	1.5 to 3.6		
		TCR4SxxDWBG		200	1.2 to 3.6	0	WCSP4
		TCR2DGxx**			1.2 to 3.6		
		TCR5SCxxFE		150	1.8 to 3.6		
	LDO Regulators	TCR2BExx	Single	200	1.0 to 3.6	0	ESV
		TCR2EExx**			1.0 to 3.6	0	
Linear Power		TAR5SxxU			1.5 to 5.0		UFV
Supplies		TCR5SBxxU			1.5 to 5.0		
		TCR5SBxxA		150	1.8 to 5.0		
		TAR5Sxx, TAR5SBxx			1.5 to 5.0		SMV
		TCR5SBxx			1.5 to 5.0		
		TCR2BFxx		200	1.0 to 5.0	0	
		TCR2EFxx**		200	1.0 to 3.6	0	
		TCR6DAxxxxU	-		1.5 to 3.6		UF6
		TCR6DAxxxx	Duai		1.5 to 3.6		SM6
	•	·		•	•	* New product	s **· I Inder development

Package

		Dual-0	Dutput			
SMV SOT-25 (2.8 x 2.9)	UFV (2.0 x 2.1)	ESV SOT-553 (1.6 x 1.6)	WCSP4 (0.79 x 0.79)	SDFN4 (0.8 x 0.8)	SM6 SOT-26 (2.8 x 2.9)	UF6 (2.0 x 2.1)
A.C.		•	00	۲	ere	4

Power Supplies by Application

🚹 Wireless Power Transfer

Toshiba is developing LSI for Wireless Power Charger (WPC Conformity).

Features

- Features of the TB6865FG (Under development; samples to be available in July, 2012)
- · Cost- and space-saving single-package solution (MCU + analog)
- Simultaneous charging of up to two devices
- Position-free (2-coil control architecture)
- Features of the TB6860WBG (Under development; samples to be available in August, 2012)
 High-current output due to the use of a switching DC-DC converter
- (maximum output: 950 mA)
- Various charge control sequences (Programmable via an I²C bus)
- · Fail-safe detection for input voltage, output current and die temperature

Application Examples

• Smartphones, digital still cameras, other portable devices

System Block Diagram

Power-Receiving Jacket (for Smartphones)

Transmitter Pad

Recommended Parts

Wireless Power Transfer ICs

Part Number	Applications	Features	Operating Input Voltage (V)	Output Current Max(A)	Switching Frequency (MHz)	Package
TB6860WBG**	Receiver IC	Sync. rectifier, DC-DC converter, LDO regulator for MCU (3.3 V)	3.4 to 15.0	1.2	3.0	WCSP39
TB6865FG**	Transmitter IC	MCU, pre-buffer, simultaneous charging of two devices	Analog(Pre Driver) 4.5 to 15.0 Digital 2.7 to 3.6	_	_	LQFP100

**: Under development

Low-Voltage Power MOSFETs for Bridge Applications

Part Number	Applications	Polarity	VDSS(V)	VGSS(V)	Id(A)	$R_{DS(ON)} Max(m\Omega)$	Package
SSM6K504NU*	MOSFET for bridge applications	N-ch	30	±20	9	26	UDFN6
SSM6N55NU*	MOSFET for bridge applications	N-ch x 2	30	±20	4	64	UDFN6
SSM6P49NU*	MOSFET for bridge applications	P-ch x 2	30	±12	-4	56	UDFN6

*: New products

Rechargeable Lithium-Ion Batteries

Features

Shown below is a design technique for protecting a rechargeable lithium-ion battery from overcharge, overdischarge and overcurrent.

Application Examples

- Notebook PCs
- Portable devices
- Circuit Example

Recommended Parts

Number of Series Cells	Applications	Туре	Part Number	Package
1-cell	1-cell Smartphones, cell phones		TPCL4201 TPCL4202 TPCL4203	Chip LGA
		Charging IC	TC7710WBG**	WCSP25
1- to 2-cell	Tablet PCs	Low-Voltage Power MOSFETs (U-MOSVII Series)	TPCP8206 TPCC8093	PS-8 TSON Advance
3- to 4-cell	Notebook PCs	Low-Voltage Power MOSFETs (U-MOSVIII Series)	TPN2R503NC** TPN4R203NC**	TSON Advance
5-cell or greater	Bicycles, UPS, etc.	Low-Voltage Power MOSFETs (U-MOSVIII Series)	TK100G06N1** TK100G08N1** TK100G10N1**	TO-220SM

Product Overview: Devices for AC-DC Power Supply Applications

PFC Control ICs

Toshiba has been developing power factor correction (PFC) controllers for reducing power factor degradation (or an increase in reactive power) and noise on AC mains due to harmonics current.

TB6818FG

Features

- Operating voltage range: 8.4 V (min) to 26 V (max)
- Startup voltage: 10.0 V (typ.)
- Pulse output mute function (starting)
- Avoiding PFC transformer noise
- Maximum drive current: 1.0 A (typ.)
- Consumption current: 250 μA (typ.)(Standby mode)
- AC instantaneously-stop detection
- Built-in protection circuits
 - DC input overvoltage protection (OVP-1)
 - PFC output overvoltage protection (OVP-2)
 - Undervoltage lockout (UVLO)
 - Feedback-loop open detection (FOD)
 - Thermal shutdown (TSD)

Block Diagram

Product Lineup

Part Number	Conduction	Supply Voltage (V)	Package	Status
TB6818FG	CCM	8.4 to 26	SSOP16	Available
TB6819AFG	CRM	9.5 to 25	SOP8	Available

Power MOSFETs for PFC Control and Switching Applications

π -MOSVII Series

The latest addition to the π -MOS portfolio, the π -MOSVII Series offers reduced capacitances due to optimized chip design and is available with a greatly wider range of electrical characteristics.

Features

- 40% reduction in Qg from $\pi\text{-MOSVI}$ due to optimized chip design
- Available in 50-V steps of VDSS and in finer steps of RDS(ON).
- Rated avalanche and reverse recovery current capabilities

Product Lineup

Part Number	Absolute Max	kimum Ratings	RDS(ON) $Max(\Omega)$	Qg Typ.	Paakaga
Fart Number	VDSS (V)	ID (A)	Vgs = 10 V	(nC)	гаскаде
TK5A45DA		4.5	1.75	9	TO-220SIS
TK6A45DA		5.5	1.35	11	TO-220SIS
TK7A45DA		6.5	1.2	11	TO-220SIS
TK8A45DA		7.5	1.1	12	TO-220SIS
TK8A45D		8	0.9	14	TO-220SIS
TK9A45D		9	0.77	16	TO-220SIS
TK11A45D	450	11	0.62	20	TO-220SIS
TK12A45D		12	0.52	24	TO-220SIS
TK13A45D		13	0.46	25	TO-220SIS
TK14A45DA		13.5	0.41	28	TO-220SIS
TK14A45D		14	0.34	38	TO-220SIS
TK16A45D		16	0.27	40	TO-220SIS
TK19A45D		19	0.25	50	TO-220SIS
TK3P50D		3	3	7	DPAK
TK4A50D		4	2	9	TO-220SIS
TK4P50D		4	2	9	DPAK
TK5A50D		5	1.5	11	TO-220SIS
TK5P50D		5	1.5	11	DPAK
TK6A50D		6	1.4	11	TO-220SIS
TK7A50D		7	1.22	12	TO-220SIS
TK7P50D		7	1.22	12	DPAK
TK8A50DA		7.5	1.04	16	TO-220SIS
TK8A50D	500	8	0.85	16	TO-220SIS
TK10A50D		10	0.72	20	TO-220SIS
TK11A50D		11	0.6	38	TO-220SIS
TK12A50D		12	0.52	25	TO-220SIS
TK13A50DA		12.5	0.47	28	TO-220SIS
TK13A50D		13	0.4	38	TO-220SIS
TK15A50D		15	0.3	40	TO-220SIS
TK15J50D		15	0.4	38	TO-3P(N)
TK18A50D		18	0.27	45	TO-220SIS
TK20J50D		20	0.27	45	TO-3P(N)

Dort Number	Absolute Max	imum Ratings	$R_{DS(ON)} Max(\Omega)$	Qg Typ.	Deekere
Fait Number	VDSS (V)	Id (A)	Vgs = 10 V	(nC)	Раскауе
TK2P60D		2	4.3	7	New PW-Mold
TK2Q60D		2	4.3	7	New PW-Mold2
TK3A60DA		2.5	2.8	9	TO-220SIS
TK4A60DA		3.5	2.2	11	TO-220SIS
TK4P60DA	· · · ·	3.5	2.2	11	DPAK
TK4A60DB		3.7	2.2	11	TO-220SIS
TK4P60DB		3.7	2	11	DPAK
TK4A60D		4	1.7	12	TO-220SIS
TK5A60D	600	5	1.43	16	TO-220SIS
TK6A60D		6	1.25	16	TO-220SIS
TK8A60DA		7.5	1	20	TO-220SIS
TK9A60D		9	0.83	24	TO-220SIS
TK10A60D		10	0.75	25	TO-220SIS
TK11A60D		11	0.65	28	TO-220SIS
TK12A60D		12	0.55	38	TO-220SIS
TK13A60D		13	0.43	40	TO-220SIS
TK15A60D		15	0.37	45	TO-220SIS
TK2A65D		2	3.26	9	TO-220SIS
TK3A65DA		2.5	2.51	11	TO-220SIS
TK3A65D		3	2.25	11	TO-220SIS
TK4A65DA		3.5	1.9	12	TO-220SIS
TK5A65DA		4.5	1.67	16	TO-220SIS
TK5A65D	650	5	1.5	16	TO-220SIS
TK6A65D	000	6	1.11	20	TO-220SIS
TK7A65D		7	0.98	24	TO-220SIS
TK8A65D		8	0.84	25	TO-220SIS
TK11A65D		11	0.7	30	TO-220SIS
TK12A65D		12	0.54	40	TO-220SIS
TK13A65D		13	0.47	45	TO-220SIS

DTMOSIV Series (Under development)

The DTMOS devices employ a super-junction structure that enables an ultra-low on-resistance with the maximum VDss rating of 600 V.

Features

Reduced RDS(ON) due to the Use of Super-Junction Technology

Compared to the π -MOS Series, the DTMOS Series is characterized by the use of a super-junction structure to greatly reduce RDS(ON). Additionally, the latest DTMOSIV provides an approximately 40% reduction in RDS(ON) over DTMOSI, making it possible to house a MOSFET with RDS(ON) of less than 100 m Ω in the TO-220SIS package. This leads to increases in power efficiency and power density.

Product Lineup

Part Number	Absolute Max	imum Ratings	$R_{DS(ON)} Max(\Omega)$	Qg Typ.	Paakago
Fait Number	VDSS (V)	Id (A)	Vgs = 10 V	(nC)	Fackage
TK5A60W		5.4	0.9	8.5	TO-220SIS
TK5P60W		5.4	0.9	8.5	DPAK
TK5Q60W		5.4	0.9	8.5	IPAK
TK6A60W		6.2	0.75	12	TO-220SIS
TK6P60W		6.2	0.75	12	DPAK
TK6Q60W		6.2	0.75	12	IPAK
TK7A60W		7	0.6	13	TO-220SIS
TK7P60W	600	7	0.6	13	DPAK
TK7Q60W	000	7	0.6	13	IPAK
TK8A60W		8	0.5	16	TO-220SIS
TK8P60W		8	0.5	16	DPAK
TK8Q60W		8	0.5	16	IPAK
TK10A60W	-	9.7	0.38	20	TO-220SIS
TK10P60W		9.7	0.38	20	DPAK
TK10Q60W		9.7 0.38		20	IPAK
TK10E60W		9.7	0.38	20	TO-220

	Alexal de Marie	Defferen			
Part Number	Absolute Max	imum Ratings	$HDS(ON) Max(\Omega)$	Qg Typ.	Package
i art Number	VDSS (V)	Id (A)	Vgs = 10 V	(nC)	T achage
TK12A60W		11.5	0.3	25	TO-220SIS
TK12P60W		11.5	0.3	25	DPAK
TK12Q60W		11.5	0.3	25	IPAK
TK12E60W		11.5	0.3	25	TO-220
TK12J60W		11.5	0.3	25	TO-3P(N)
TK16A60W		15.8	0.19	38	TO-220SIS
TK16E60W	600	15.8	0.19	38	TO-220
TK16J60W	000	15.8	0.19	38	TO-3P(N)
TK31A60W		30.8	0.088	87	TO-220SIS
TK31E60W		30.8	0.088	87	TO-220
TK31J60W		30.8	0.088	87	TO-3P(N)
TK39A60W		38.8	0.065	110	TO-220SIS
TK39J60W		38.8	0.065	110	TO-3P(N)
TK62J60W		61.8	0.04	178	TO-3P(N)

Switching Power Transistors

Product Lineup

	•													
		Absolute Maximum Ratings				DC Characteristics						Switching Characteristics		
Package	Package Part Number	Vсво	VCEO	lc	hfe Min			Vce(sat) Max			tr Max	tstg Max	tr Max	
		(V)	(V)	(A)		VCE (V)	Ic (A)	(V)	Ic (A)	Iв (A)		(µS)		
	2SC5548A	600	400	2	40	5	0.2	1.0	0.8	0.1	0.5	3.0	0.3	
DW/ Mold	TTC008	600	285	1.5	100	5	0.3	1.0	0.5	0.0625	0.05(typ.)	3.3(typ.)	0.1(typ.)	
F VV-IVIOID	2SC6142	800	375	1.5	100	5	0.1	0.9	0.8	0.1	0.2(typ.)	3.5(typ.)	0.15(typ.)	
	TTC012	800	375	2	100	5	0.3	0.5	0.5	0.0625	0.1(typ.)	4.4(typ.)	0.15(typ.)	

Power Transistors for MOS Gate Drivers (for High-Speed Gate Drive of MOS Devices)

Product Lineup (2-in-1 Series)

			Abso	lute Max	imum Ra	tings		h	IFE		VCE(sat) Max		
Package	Part Number	Polarity	VCEO	lc	ICP	Pc			VCE	lc		lc	lв
			(V)	(A)	(A)	(mW)	Min	Max	(V)	(A)	(V)	(A)	(mA)
		PNP	-30	-1.0	-5	550	200	500	-2	-0.12	-0.2	-0.4	-13
SWV	SMV	NPN	30	1.2	5	550	200	500	2	0.12	0.17	0.4	13
Sivi v		PNP	-30	-1.8	-8	750	200	500	-2	-0.2	-0.2	-0.6	-20
HN4B102J	NPN	30	2	8	750	200	500	2	0.2	0.14	0.6	20	
		PNP	-50	-0.7	-5	400	200	500	-2	-0.1	-0.23	-0.3	-10
VEC	TPC6901A	NPN	50	1	5	400	400	1000	2	0.1	0.17	0.3	6
V3-0	TROCOM	PNP	-30	-1.7	-8	700	200	500	-2	-0.2	-0.2	-0.6	-20
	TPC6902	NPN	30	2	8	700	200	500	2	0.2	0.14	0.6	20
		PNP	-50	-0.8	-5	830	200	500	-2	-0.1	-0.2	-0.3	-10
IPCP890	1PCP8901	NPN	50	1	5	830	400	1000	2	0.1	0.17	0.3	6
P3-8	TROPODO	PNP	-30	-2	-8	890	200	500	-2	-0.2	-0.2	-0.6	-20
	TPCP8902	NPN	30	2	8	890	200	500	2	0.2	0.14	0.6	20

Transistor-Output Photocouplers

TLP185/TLP291

The TLP185 and TLP291 are new additions to Toshiba's transistor-output photocoupler offerings in a small, thin package that is compliant with the reinforced insulation class of international safety standards.

The TLP185 and TLP291 have achieved certification for a safety level higher than the previous devices by providing a creepage/clearance distance of more than 5 mm; insulation thickness of more than 0.4 mm; and thus the isolation voltage of more than 3750 Vrms.

- VDE-approved: EN60747-5-5-approved with option V4 Maximum working insulation voltage: 707 Vpk Maximum transient overvoltage: 6000 Vpk
- UL-recognized: UL1577 (File No. E67349)
- BSI approved
- Creepage/clearance: 5.0 mm (min)
- Insulation thickness: 0.4 mm (min)
- Operating temperature: Ta = -55°C to 110°C

Product Lineup

(Photocouplers with transistor output providing isolated feedback from the secondary side to the primary side)

		A	Absolute Maximu	ım Ratings (Ta=2	5°C)	Safety Standards				
Part Number	Package	IF (mA)	Vceo (V)	Ic (mA)	Isolation voltage (Vrms)	UL cUL	VDE EN60747-5-5*	BSI EN60950 EN60065	SEMKO EN60950 EN60065	
TLP185	SO6 (4pin)	50	80	50	3750	0	0	0	0	
TLP291	SO4	50	80	50	3750	0	0	0	0	
TLP785	DIP4	50	80	50	5000	0	0**	0	0	

*The EN60747-5-5 approvals vary with packages. For details, please contact our sales representative. **TLP785 acquired EN60747-5-2 approval.

Pin Configuration

Schottky Barrier Diodes (SBDs) and High-Efficiency Diodes (HEDs)

Product Lineup

Schottky Barrier Diodes (SBDs)

Daakaga	Part Number		Absolut	e Maximum	Ratings		Electrical Characteristics (Max)				
Fackage	Fart Number	VRRM (V)	IF(AV) (A)	IFSM (A)	Tj (°C)	Tstg (°C)	IRRM (mA)	VFM (V)	OLEM (A)	C _j (pF)(Typ.)	Conditions
	CUS05			20	125	-40 to 150	10	0.37	0.7	40	Conditions
	CUS06	20		20	150	-40 to 150	0.03	0.45	0.7	40	
	CUS01			20	125	-40 to 150	1.5	0.37	0.7	40	
	CUS02		1.0	20	150	-40 to 150	0.1	0.45	0.7	40	
LIS-EL AT™	CUS10130A	30		20	150	-55 to 150	0.06	0.39	0.7	50	Vr = 10 V,
03-I LAI	CUS15I30A			20	150	-55 to 150	0.06	0.46	1.5	50	f = 1 MHz
	CUS03		0.7	20	150	-40 to 150	0.00	0.52	0.7	45	
	CUS10I40A	40	1.0	20	150	-55 to 150	0.06	0.49	0.7	35	
	CUS04	60	0.7	20	150	-40 to 150	0.1	0.58	0.7	38	
	CBS06	20	0.17	20	125	-40 to 150	1	0.36	1.0	60	
	CBS01	20		20	125	-40 to 150	1.5	0.37	0.7	40	
	CBS03			20	150	-40 to 150	0.1	0.45	0.7	40	
	CBS05			20	150	-40 to 150	∇	0.45	1.0	60	
	CBS11		1.0	20	125	-40 to 150	1.5	0.36	1.0	60	
	CBS10I30A			20	150	-55 to 150	0.06	0.39	0.7	50	
	CBS10I30B		-	20	150	-55 to 150	0.06	0.42	1.0	50	
	CBS10I30C			30	150	-55 to 150	0.10	0.36	1.0	82	
	CBS08	30		30	125	-40 to 150	1	0.36	1.5	90	
	CBS09			30	150	-40 to 150	0.05	0.46	1.5	90	
	CBS15I30A		1.5	20	150	-55 to 150	0.06	0.46	1.5	50	
	CRS15I30B			30	150	-55 to 150	0.10	0.40	1.5	82	1011
S-FLAT™	CRS14			30	150	-40 to 150	0.05	0.49	2	90	VR = IUV,
	CRS20I30A		2.0	20	150	-55 to 150	0.06	0.49	2.0	50	T = 1 MHZ
	CRS20I30B			30	150	-55 to 150	0.10	0.45	2.0	82	
	CRS15 🛇		2.0	30	150	-40 to 150	0.05	0.52	3.0	90	
	CRS30I30A		3.0	30	150	-55 to 150	0.10	0.49	3.0	82	
	CRS04			20	150	-40 to 150	0.1	0.49	0.7	47	
	CRS10I40A			20	150	-55 to 150	0.06	0.49	0.7	35	
	CRS10I40B	40	1.0	25	150	-55 to 150	0.10	0.45	1.0	62	
	CRS15I40A	40	1.0	20	150	-55 to 150	0.06	0.55	1.5	35	
	CRS20I40A			20	150	-55 to 150	0.06	0.60	2.0	35	
	CRS20I40B			25	150	-55 to 150	0.10	0.52	2.0	62	
	CRS12	60	1.0	20	150	-40 to 150	0.1	0.58	1.0	40	-
	CRS13		-	20	150	-40 to 150	0.05	0.55	1.0	40	
	CMS08	-		25	125	-40 to 150	1.5	0.37	1.0	70	
	CMSU9	-	1.0	25	150	-40 to 150	0.5	0.45	1.0	70	
	CMS10I30A	-		30	125	-55 t0 150	0.10	0.36	1.0	82	
	CMS00	-		40	120	-40 to 150	3.0	0.37	2.0	130	
		-	2.0	40	150	-40 to 150	0.5	0.45	2.0	130	
	CMS20120A	30		30	150	-40 to 150	0.10	0.45	2.0	82	
	CMS01	-		40	125	-40 to 150	5.0	0.37	3.0	190	
	CMS03		3.0	40	150	-40 to 150	0.5	0.45	3.0	190	
	CMS30I30A		0.0	30	150	-55 to 150	0.10	0.49	3.0	82	
	CMS04			70	125	-40 to 150	8.0	0.37	5.0	330	Vr = 10 V,
	CMS05		5.0	70	150	-40 to 150	0.8	0.45	5.0	330	t = 1 MHz
	CMS10			25	150	-40 to 150	0.5	0.55	1.0	50	
	CMS10I40A		1.0	25	150	-55 to 150	0.10	0.45	1.0	62	
	CMS15I40A		-	25	150	-55 to 150	0.10	0.49	1.5	62	
	CMS11	40	0.0	30	150	-40 to 150	0.5	0.55	2.0	95	
	CMS20140A		2.0	25	150	-55 to 150	0.10	0.52	2.0	62	
	CMS16		2.0	30	150	-40 to 150	0.2	0.55	3.0	95	
-	CMS30I40A		3.0	25	150	-55 to 150	0.10	0.55	3.0	62	1
	CMS14	60	2.0	40	150	-40 to 150	0.2	0.58	2.0	77	
	CMS15	00	3.0	60	150	-40 to 150	0.3	0.58	3.0	102	
	CLS01	30	3.0	100	125	-40 to 150	1.0	0.47	10	530	VB = 10 V
L-FLAT™	-FLAT [™] CLS02 40 10	10	100	125	-40 to 150	1.0	0.55	10	420	$f = 1 MH_7$	
	CLS03	60	10	100	125	-40 to 150	1.0	0.58	10	345	T = T IVIMZ

 \bigtriangledown : IRRM = 5 μ A Max (VR = 5 V) \diamondsuit : IF(DC) = 3 A

High-Efficiency Diodes (HEDs)

Daakaga	Dort Number		Absolute	e Maximum	Ratings			Electrical	Characteris	tics (Max)	
гаскаде	Fart Number	VRRM (V)	IF(AV) (A)	Ifsм (A)	Tj (°C)	Tstg (°C)	Irrm (µA)	Vfm (V)	@Іғм (А)	trr(ns)	Conditions
	CRH02	200	0.5	10	150	-40 to 150	10	0.95	0.5	35	IF = 1 A,
S-FLAI	CRH01	200	1.0	15	150	-40 to 150	10	0.98	1.0	35	di/dt = -30 Å/µs
	CMH04	200	1.0	20	150	-40 to 150	10	0.98	1.0	35	
	CMH07	200	2.0	40	150	-40 to 150	10	0.98	2.0	35	
	CMH01	200	3.0	40	150	-40 to 150	10	0.98	3.0	35	
	CMH05	400	1.0	20	150	-40 to 150	10	1.3	1.0	50	I= 1 A
M-FLAT™	CMH05A	400	1.0	10	150	-40 to 150	10	1.8	1.0	35	IF = I A, di/dt _ 20 A/uo
	CMH08	400	2.0	30	150	-40 to 150	10	1.3	2.0	50	$di/dt = -30 A/\mu s$
	CMH08A	400	2.0	20	150	-40 to 150	10	1.8	2.0	35	
	CMH02	400	3.0	40	150	-40 to 150	10	1.3	3.0	50	
	CMH02A	400	3.0	30	150	-40 to 150	10	1.8	3.0	35	
	CLH01	200	3.0	60	150	-40 to 150	10	0.98	3.0	35	
	CLH05	200	5.0	100	150	-40 to 150	10	0.98	5.0	35	
	CLH02	300	3.0	50	150	-40 to 150	10	1.3	3.0	35	I⊧ = 2 A,
L-FLAT™	CLH06	300	5.0	60	150	-40 to 150	10	1.3	5.0	35	di/dt = -50 A/µs
	CLH03	400	3.0	30	150	-40 to 150	10	1.8	3.0	35]
	CLH07	400	5.0	50	150	-40 to 150	10	1.8	5.0	35	

Synchronous Rectification MOSFETs

U-MOSVIII-H Series (VDSS = 60 to 120 V)

Features

- . Low on-resistance achieved by high density through the use of submicron technology
- Guaranteed avalanche capability

Efficiency Test Circuit

120 W (19.5 V/6.2 A) Flyback Converter V_{IN} = 100 Vac

Product Lineup

Dort Number		Absolute Max	imum Ratings		$R_{DS(ON)}$ (m Ω)	@Vgs = 10 V	Qg (nC) Typ.	Qsw (nC) Typ.	Dookogo	Carios
Part Number	V _{DSS} (V)	V _{GSS} (V)	I _D (A)	PD (W)	Тур.	Max	VDD = VDSS X	0.8, $ID = ID(DC)$	Раскаде	Series
TK75A06K3	60	±20	75	35	4.5	5.5	85	—	TO-220SIS	U-MOSIV
TK46E08N1	80	±20	80	103	6.9	8.4	37	16	TO-220	U-MOSVIII-H
TK46A08N1	80	±20	80	35	6.9	8.4	37	16	TO-220SIS	U-MOSVIII-H
TK72E08N1	80	±20	157	192	3.6	4.3	81	33	TO-220	U-MOSVIII-H
TK72A08N1	80	±20	157	45	3.7	4.5	81	33	TO-220SIS	U-MOSVIII-H
TK100E08N1	80	±20	214	255	2.6	3.2	130	53	TO-220	U-MOSVIII-H
TK100A08N1	80	±20	214	45	2.6	3.2	130	53	TO-220SIS	U-MOSVIII-H
TK100G08N1**	80	±20	(224)	250	(2.3)	(2.8)	TBD	TBD	TO-220SM	U-MOSVIII-H
TK18E10K3	100	±20	18	71	33	42	33		TO-220	U-MOSIV
TK22E10N1	100	±20	52	72	11.5	13.8	28	12	TO-220	U-MOSVIII-H
TK22A10N1	100	±20	52	30	11.5	13.8	28	12	TO-220SIS	U-MOSVIII-H
TK34E10N1	100	±20	75	103	7.9	9.5	38	15	TO-220	U-MOSVIII-H
TK34A10N1	100	±20	75	35	7.9	9.5	38	15	TO-220SIS	U-MOSVIII-H
TK40E10N1	100	±20	90	126	6.8	8.2	49	21	TO-220	U-MOSVIII-H
TK40A10N1	100	±20	90	35	6.8	8.2	49	21	TO-220SIS	U-MOSVIII-H
TK65E10N1	100	±20	148	192	4	4.8	81	32	TO-220	U-MOSVIII-H
TK65A10N1	100	±20	148	45	4	4.8	81	32	TO-220SIS	U-MOSVIII-H
TK65G10N1**	100	±20	(151)	192	(3.7)	(4.5)	81	32	TO-220SM	U-MOSVIII-H
TK100E10N1	100	±20	207	255	2.8	3.4	140	55	TO-220	U-MOSVIII-H
TK100A10N1	100	±20	207	45	3.1	3.8	140	55	TO-220SIS	U-MOSVIII-H
TK100G10N1**	100	±20	(212)	250	(2.6)	(3.1)	TBD	TBD	TO-220SM	U-MOSVIII-H
TK56E12N1**	120	±20	112	168	5.8	7.0	69	29	TO-220	U-MOSVIII-H
TK56A12N1**	120	±20	112	45	6.2	7.5	69	29	TO-220SIS	U-MOSVIII-H

**: Under development(All specs are preliminary.)

Single-Output Buck DC-DC Converter ICs

These DC-DC converter ICs are best suited to low-voltage, high-current drive of ICs implemented in various equipment, such as SoCs and ASICs.

Toshiba's DC-DC converter ICs require only a few external components, such as inductors, capacitors and output voltage setting resistors. They help to reduce the size and improve the efficiency (i.e., reduce the power loss) of various applications.

Features

- Available with output current capabilities ranging from 0.5 A to 6.5 A.
- High efficiency: 95% typical when the TCV7116FN is used @ VIN = 5 V, VOUT = 3.3 V, IOUT = 0.7 A, PWM mode
- Improved efficiency at light loads: TCV7106FN/07F/13F/16FN/17F
- Dual-output DC-DC converters with series regulator: TB7109F/10F
- High accuracy reference voltage (VFB): 0.8 V ± 1% (with the TCV71xx series)
- Reduces the size of external parts by offering the high-frequency switching ability.
- Offers fast transient response using current-mode control.
- A ceramic capacitor can be used as an output filter capacitor.

Application Circuit Example (TCV7116FN)

Here is a typical application circuit using a low-ESR electrolytic capacitor or a ceramic capacitor as Cout.

Product Lineup

	Outout	Operating		Curitobing		Function	S			
Part Number	Current (A)	Input Voltage (V)	Output Voltage (V)	Frequency (kHz)	Synchronous Rectification	External Low-Side MOS	Phase Compensation Logic	Package	Remarks	
TCV7103AF	C F	2.7 to 5.6		1000	•	•	Integrated	SOP Advance		
TCV7113F	0.5	2.7 to 5.6		1000	Chopper mode avail ⁻¹	•	Integrated	SOP Advance	Improved light-load efficiency	
TCV7101F	2.0	2.7 to 5.5		600	•	•	Integrated	SOP Advance		
TCV7102AF	3.0	2.7 to 5.6	Adjustable	1400	•		Integrated	SOP Advance		
TCV7107F	2.0	2.7 to 5.6		550	Chopper mode avail		Integrated	SOP Advance	Improved light-load efficiency	
TCV7117F	3.0	2.7 to 5.6		550	•		Integrated	SOP Advance	Improved light-load efficiency	
TCV7100AF	2.7	2.7 to 5.5	(Vfb = 0.8 ± 1%)	800	•		Integrated	SOP Advance		
TCV7105F		2.7 to 5.5		1500	•		Integrated	SOP Advance		
TCV7106FN	0.5	2.7 to 5.6		550	Chopper mode avail		Integrated	PS-8	Improved light-load efficiency	
TCV7116FN	2.5	2.7 to 5.6		550	•		Integrated	PS-8	Improved light-load efficiency	
TCV7108FN		2.7 to 5.6		1500	•		Integrated	PS-8	Improved load transient response	
TCV7104FN	2.0	2.7 to 5.5		1500	•		Integrated	PS-8		
TB7106F	3.0	4.5 to 20	Adjustable	380			Externally required	SOP Advance		
TB7107FN	2.0	4.5 to 20	(Vfb = 0.8 ± 2.25%)	380			Externally required	PS-8		
TB7110F	1.5	4.5 to 27	Adjustable	500			Integrated	SOP Advance	DC-DC conv. + regulator	
TB7109F	0.5	8 to 27	(Vfb = 1.215 ± 2.9%)	400			Integrated	SOP Advance	DC-DC conv. + regulator (for LNB)	

Application Examples

- LCD TVs
- Digital home appliances
- Plasma TVs
- Amusement equipment
- Copies
- Industrial equipment
- Efficiency Curves<Typical Characteristics> (TCV7116FN)

The integrated high-speed, low-Ron MOSFETs allow the switching between Continuous PWM mode and Pulse Skip mode according to the voltage at the MODE pin. This feature provides high efficiency over a wide output current range.

*1: Automatic switchable operation type.

Multiple-Output DC-DC Converter ICs

Features

Multiple-output DC-DC converter ICs are power management ICs (PMICs) that integrate several DC-DC converters on a single chip for space-saving applications. One PMIC can supply power to multiple peripheral devices and meet the needs for various applications. Multiple-output DC-DC converters are available with various output channel options to meet diverse requirements.

Application Examples

- Cell phones
- Digital still cameras

Product Lineup

Part Number	Application			Channels			Operating Input Voltage	Switching Frequency	Packago	
Fait Number	Application	Boost	Buck	Buck-Boost	Invert	LDO	(V)	(kHz)	гаскаде	
TB6817WBG	SSD	-	2	-	-	-	3.0 to 3.6	1500	WCSP24	
TB6830WBG	WiMAX	-	2	1	-	5	2.7 to 5.5	1500	WCSP53	
TC7731FTG **	DDR2/3	-	1	-	-	1	2.7 to 5.5	500/1000	QFN40	
TC7732FTG **	Cell phones	-	1	-	-	4	2.5 to 5.5	4000	QFN16	
TC7733FTG **	DVC	1	6	-	-	1	5.0 to 14	400/800	QFN52	

Under development

Digital Step-Down DC-DC Converter IC

Features

Toshiba offers a buck DC-DC converter IC using digital feedback control. To reduce power consumption and board space, the TC7751FTG provides digital control in hardware that has previously been implemented as firmware running on a DSP or MCU core. The TC7751FTG has state monitoring functions for current, voltage and temperature to detect system power supply faults early. Not only does it feed back the state information to a host but also activates a protection circuit to protect itself. The communication features of the TC7751FTG can also be used to feed back the state of system power supply changes as well as to program the output voltage, monitoring thresholds, etc. Thus, the TC7751FTG allows you to address various needs for DC-DC converters.

Application Examples

POL power supplies (servers, printers, etc.)

Application Circuit Example

Part Number	Туре	Output Current (A)	Operating Input Voltage (V)	Output Voltage (V)	Switching Frequency (kHz)	Package
TC7751FTG **	Controller	35 *1	3.0 to 5.5	0.6 to 4.3	100 to 1000	QFN28

**: Under development *1: Depends on external MOSFET.

Rechargeable Lithium-Ion Battery Charger

TC7710WBG

Features

Many mobile devices have an embedded high-capacity lithium-ion battery pack in order to deliver extended playtime for wide-ranging applications such as music, video and games. Manufacturers of mobile devices have been striving to keep its charge time equal to or less than the predecessor. The TC7710WBG provides the ideal solution for rechargeable lithium-ion battery chargers with a USB port. It is compliant with the Battery Charging Specification 1.2. Due to the adoption of a DC-DC converter, it offers high efficiency and a high charge current of 2 A.

Application Examples

• Devices with a rechargeable lithium-ion battery (e.g., cell phones, digital still cameras)

Five Benefits

Application Circuit Example

Product Lineup

Part Number	Operating Input Voltage (V) Input Current (A		Output Voltage (V)	Output Current (A)	Switching Frequency (kHz)	Package
TC7710WBG **	4.3 to 6.5	2 (max)	3.46 to 4.72	2 (max)	3000	WCSP25

Low-Voltage MOSFETs for DC-DC Converter Applications (VDSS = 30 to 100 V)

By employing microfabrication technology and reducing the gate charge, the power MOSFET series achieves extremely high speed and low RDS(ON).

Features

- Low RDS(ON)
- High-speed switching
- Total gate charge (Qg) reduction
- High avalanche capability

Product Lineup

Config	Configuration Absolute Maximum F	Ratings	Part Number	Package	RDS(ON)(r	nΩ) Max.	Qg(nC) Typ.	Qsw(nC) Typ.	Sorios		
Connig	uration	VDSS(V)	VGSS(V)	ID(A)	Fart Number	Fackage	Vgs = 10 V	Vgs = 4.5 V	Vdd = V	DSS X 0.8	Series
				9	TPCC8067-H		25	33	9.5	1.9	U-MOSVII-H
				11	TPCC8066-H		15	19	15	3.2	U-MOSVII-H
				13	TPCC8068-H	TCON Advance	11.6	16	14	3.3	U-MOSVII-H
				13	TPCC8065-H	150N Advance	11.4	14.5	20	4.3	U-MOSVII-H
				19	TPCC8064-H		8.2	10.6	23	5	U-MOSVII-H
				27	TPCC8062-H		5.6	7.1	34	7.4	U-MOSVII-H
				15	TPCA8068-H		11.6	16	14	3.3	U-MOSVII-H
		00		16	TPCA8065-H		11.4	14.5	20	4.3	U-MOSVII-H
		30		20	TPCA8064-H		8.2	10.6	23	5	U-MOSVII-H
				22	TPCA8063-H	SOP Advance	6.8	8.7	27	5.9	U-MOSVII-H
				28	TPCA8062-H		5.6	7.1	34	7.4	U-MOSVII-H
				32	TPCA8059-H		3.8	4.8	41	9.1	U-MOSVII-H
				38	TPCA8058-H		3	3.8	51	12	U-MOSVII-H
				42	TPCA8057-H		2.6	3.2	61	14	U-MOSVII-H
				48	TPCA8056-H		2.2	2.7	74	17	U-MOSVII-H
				56	TPCA8055-H		1.9	2.3	91	21	U-MOSVII-H
				20	TPCA8052-H		11.3	13.1	25	6.8	U-MOSVI-H
		40		32	TPCA8047-H		7.3	8.5	43	13	U-MOSVI-H
	N-ch Single ±2		38	TPCA8046-H		5.4	6.3	55	15	U-MOSVI-H	
N ab				46	TPCA8045-H		3.6	4.1	90	23	U-MOSVI-H
IN-CI1				(11)	TPN22006NH **		(22)	-	(10)	(4.5)	U-MOSVIII-H
			±20	(13)	TPN14006NH **	TSON Advance	(13.9)	-	(16)	(6.9)	U-MOSVIII-H
				(27)	TPN7R506NH **		(7.5)	-	(24)	(10)	U-MOSVIII-H
				15	TPCA8053-H		22.3	24	25	6.9	U-MOSVI-H
				14	TPH14006NH		14	-	16	6.3	U-MOSVIII-H
		60		22	TPH7R506NH		7.5	-	31	14	U-MOSVIII-H
				24	TPCA8050-H		14.2	15.3	41	10	U-MOSVI-H
				28	TPCA8049-H	SOF Auvance	10.4	11.2	55	13	U-MOSVI-H
				28	TPH5R906NH		5.9	-	38	18	U-MOSVIII-H
				32	TPH4R606NH		4.6	-	49	19	U-MOSVIII-H
				35	TPCA8048-H		6.6	7.1	90	19	U-MOSVI-H
				9.6	TPN30008NH **		30	-	11	4.1	U-MOSVIII-H
				(18)	TPN13008NH **	150N Advance	(13.3)	-	(18)	(6.7)	U-MOSVIII-H
		80		24	TPH12008NH **		12.3	-	22	8.1	U-MOSVIII-H
				28	TPCA8051-H	SOP Advance	9.4	9.8	91	18	U-MOSVI-H
				34	TPH8R008NH **		8	-	35	13	U-MOSVIII-H
	100 9.4 TP (17) TP 24 TP	9.4	TPN3300ANH **		33	-	11	4.5	U-MOSVIII-H		
		TPN1600ANH **	150N Advance	(16)	-	(19)	(7.4)	U-MOSVIII-H			
		24	TPH1400ANH **		13.6	-	22	9.4	U-MOSVIII-H		
				32	TPH8R80ANH **		8.8	-	33	13	U-MOSVIII-H
			1	35	TPCA8A11-H	SOP Advance	3.6	4.6	46	10	U-MOSVII-H
MOSBD		30		40	TPCA8A10-H		3	3.8	57	12	U-MOSVII-H
		50		51	TPCA8A09-H		2.3	2.8	82	17	U-MOSVII-H

**: Under development(All specs are preliminary.)

Bipolar Power Transistors for self-Excited DC-DC Converter Applications

Product Lineup

		Absolute Maximum Ratings					hfe				VCE(sat) Max		
Package	Part Number	VCEX	VCEO	lc	Pc				lc		lc	Ів	
		(V)	(V)	(A)	(W)	Min	Max	(V)	(A)	(V)	(A)	(mA)	
TSM	2SC6061	150	120	1	0.625 *1	120	300	2	0.1	0.14	0.3	10	
	TPCP8510	150	120	1	1.1 *1	120	300	2	0.1	0.14	0.3	10	
P5-8	TPCP8507	150	120	1	1.25 *1	120	300	2	0.1	0.14	0.3	10	
PW-Mold	2SC6076	160	80	3	10 * ²	180	450	2	0.5	0.5	1	100	
PW-Mini	2SC6124	160	80	2	1 *1	100	200	2	0.5	0.5	1	100	

*1: Mounted on FR4 board (Cu area: 645 mm²; glass epoxy; t = 1.6 mm) *2: Tc = 25°C

Product Overview: Other Devices for Power Supply Applications

Load Switch ICs (Low On-Resistance, Low-Voltage Operation, Additional Features, Ultra-Small Package)

TCK10xG Series

The TCK10xG Series consists of CMOS load switch ICs with low-voltage operation, low on-resistance, low current consumption and a control input pin. It features a wide operating voltage range of 1.1 to 5.5 V and low on-resistance of 55 m Ω typical (VIN = 3.3 V, 500 mA). Additionally, all the load switches of the TCK10xG Series have inrush current reduction and thermal shutdown circuits. An auto discharge function and an overcurrent protection circuit are available on some load switches. Those without overcurrent protection provide an output current of 1 A, while those with overcurrent protection are offered with output currents of 0.2 A, 0.5 A and 0.8 A.

The TCK10xG Series is housed in an ultra-small WCSP6 package with a lead pitch of 0.4 mm (measuring 0.8 mm x 1.2 mm x 0.64 mm (max)), making it ideal for applications that require high-density assembly such as portable devices.

Features

- Wide operating voltage range (VIN = 1.1 to 5.5 V)
- Low Ron

 $Ron = 50 m\Omega$ (typ.) @ VIN = 5.0 V, 500 mA $Ron = 55 m\Omega$ (typ.) @ VIN = 3.3 V, 500 mA $Ron = 75 m\Omega (typ.) @ Vin = 1.8 V, 500 mA$ Ron = 120 mΩ (typ.) @ VIN = 1.2 V, 800 mA

- Low current consumption Iq = 8 μA (typ.) @ IOUT = 0 mA (TCK101G, TCK102G)
- Iq = 20 μA (typ.) @ IOUT = 0 mA
- (TCK103G, TCK104G, TCK105G)
- Low standby current (IQ(OFF) = 0.1 μA (typ.)
- Inrush current reduction circuit
- Overcurrent protection circuit (except TCK101G and TCK102G)
- Thermal shutdown circuit
- Auto discharge (except TCK102G)
- · Control pin connected to a pull-down resistor
- Ultra-small package

WCSP6 (0.8 mm x 1.2 mm x 0.64 mm(max))

Application Examples

- Cell phones
 Digital still cameras
 Small portable devices
- Portable audio players
 Tablet PCs

Application Circuit Example

Product Lineup

Note: The products listed below are under development; their specifications are subject to change without notice.

Part Number		Features								
Fait Number	Operating voltage (v)	Overcurrent Protection	Thermal Shutdown	Auto Discharge	Control Pin Connection					
TCK101G**		_	Y	Y	Pull-down					
TCK102G**		-	Y	-	Pull-down					
TCK103G**	1.1 to 5.5	Y (Up to 200 mA)	Y	Y	Pull-down					
TCK104G**		Y (Up to 500 mA)	Y	Y	Pull-down					
TCK105G**]	Y (Up to 800 mA)	Y	Y	Pull-down					

On-Resistance of the TCK101G and TCK102G (Ta= 25°C)

CMOS LDO Regulators

TCR2EN, TCR2EE and TCR2EF Series

Toshiba offers a robust portfolio of LDO regulators ranging from general-purpose products to high-end products ideal for applications requiring high accuracy and high stability that are particularly needed for analog circuitry.

The TCR2EN, TCR2EE and TCR2EF Series are fabricated with a newly developed CMOS process to deliver a significant improvement in performance/size trade-offs. While physically small, these single-output LDO regulators offer a small voltage dropout, an output current (IouT) of 200 mA and a control pin. Additionally, the TCR2EN, TCR2EE and TCR2EF Series provide a low output noise, fast load transient response, automatic output discharge, thermal shutdown, etc. and can be used for a broad range of applications. Wide packaging options include an ultra-small SDFN4 (measuring 0.8 mm x 0.8 mm x 0.38 mm), a general-purpose ESV also known as SOT-553 (measuring 1.6 x 1.6 x 0.55 mm), SMV also known as SOT25 (measuring 2.9 x 2.8 x 1.1 mm), etc.

Features

Low dropout voltage

 $\begin{array}{l} V_{\text{IN-VOUT}} = 160 \text{ mV (typ.)} @ 2.5-V \text{ output, } \text{lout} = 150 \text{ mA} \\ V_{\text{IN-VOUT}} = 210 \text{ mV (typ.)} @ 1.8-V \text{ output, } \text{lout} = 150 \text{ mA} \\ V_{\text{IN-VOUT}} = 490 \text{ mV (typ.)} @ 1.0-V \text{ output, } \text{lout} = 150 \text{ mA} \\ \end{array}$

- Low output noise voltage: VNO = 35 $\mu Vrms$ (typ.) @ 2.5-V output, IOUT = 10 mA, 10 Hz < f < 100 kHz
- Load transient response: $\Delta V_{OUT} = \pm 55 \text{ mV}$ (typ.)
- @ lout = 1 ↔ 150 mA, Cout =1.0 uF
- Low bias current: IB = 35 μ A (typ.) @ IOUT = 0 mA
- High ripple rejection ratio: (R.R = 73 dB (typ.)
 @ 2.5-V output, lout = 10 mA, f =1 kHz
- Available with output voltage from 1.0 V to 3.6 V (fixed output voltage)
- High output voltage accuracy: ±1.0% (Vou⊤ ≥1.8 V)
- Automatic output discharge; control pin connected to a pull-down resistor
- Allows use of ceramic capacitors on the input and output lines (CIN = 0.1 uF, COUT = 1.0 uF)

Application Examples

- Cell phones
- Digital still cameras (DSCs)
- Small portable devices
- Televisions
- PCs
- DVD and Blu-ray recorders
- Portable audio players

Application Circuit Example

• Typical Performance (TCR2EN Series)

The TCR2EN Series features a low dropout voltage of 160 mV (at 2.5-V output and IouT = 150 mA). Additionally, it offers a low output noise voltage of 35 μ Vrms (at 2.5-V output) and a fast load transient response of Δ VouT = ±55 mV (IouT = 1mA \leftrightarrow 150 mA, CouT = 1.0 μ F).

Comparison of Voltage Dropout Performance Between

1.2-V LDO Regulators

^{*} For reference only; comparison of 200-mA LDO regulators with the same chip size

Load Transient Response Performance

Product Lineup

Series	Output Current	Output Voltage	Overcurrent Protection	Automatic Output Discharge (Pulled-Down Control Pin)	Package
TCR2ENxx *	200	1.0 to 3.6	0	0	SDFN4
TCR2EExx **	200	1.0 to 3.6 *1	0	0	ESV(SOT-553)
TCR2EFxx **	200	1.0 to 3.6 *1	0	0	SMV(SOT25)

*1: If you have any requests for output voltage, etc., feel free to contact your local Toshiba sales representative.

*: New products **: Under development

OVERSEAS SUBSIDIARIES AND AFFILIATES

Toshiba America

- Electronic Components, Inc.
- · Irvine, Headquarters Tel: (949)623-2900 Fax: (949)474-1330
- Buffalo Grove (Chicago) Tel: (847)484-2400 Fax: (847)541-7287
- Duluth/Atlanta Tel: (770)931-3363 Fax: (770)931-7602
- · El Paso
- Tel: (915)771-8156 Marlborough
- Tel: (508)481-0034 Fax: (508)481-8828 Parsippany
- Tel: (973)541-4715 Fax: (973)541-4716
- San Jose Tel: (408)526-2400 Fax: (408)526-2410 Wixom (Detroit)
- Tel: (248)347-2607 Fax: (248)347-2602 Toshiba Electronics do Brasil Ltda.
- Tel: (011)2936-6681 Fax: (011)2936-6675 Toshiba India Private Ltd.
- New Deli Office
- Tel: (0124)499-6600 Fax: (0124)499-6611 Bangalore Office
- Tel: (080)251-90800 Fax: (080)490-91945

- Toshiba Electronics Europe GmbH
- · Düsseldorf Head Office Tel: (0211)5296-0 Fax: (0211)5296-400
- France Branch
- Tel: (1)47282181 · Italy Branch
- Tel: (039)68701 Fax: (039)6870205 Munich Office
- Tel: (089)20302030 Fax: (089)203020310 Spain Branch
- Tel: (91)660-6798 Fax: (91)660-6799
 - Sweden Branch Tel: (08)704-0900 Fax: (08)80-8459
 - U.K. Branch
- Tel: (0870)060-2370 Fax: (01252)53-0250 Toshiba Vietnam Consumer Products Co., Ltd.
- Tel: (043)776-5950 Fax: (043)776-5956 Toshiba Electronics Asia (Singapore) Pte. Ltd.
- Tel: (6278)5252 Fax: (6271)5155 Toshiba Electronics Service (Thailand) Co., Ltd.
- Tel: (02)501-1634 Fax: (02)501-1638 Toshiba Electronics Trading (Malaysia)Sdn. Bhd.
- · Kuala Lumpur Head Office Tel: (03)5631-6311 Fax: (03)5631-6307
- · Penang Office Tel: (04)226-8523 Fax: (04)226-8515

(As of October 1, 2012)

Toshiba Electronics (Shanghai) Co., Ltd. · Shanghai Head Office

- Tel: (021)6139-3888 Fax: (021)6190-8288
- · Beijing Branch Tel: (010)6590-8796 Fax: (010)6590-8791
- · Chengdu Branch Tel: (028)8675-1773 Fax: (028)8675-1065
- · Hangzhou Office
- Tel: (0571)8717-5004 Fax: (0571)8717-5013
- Nanjing Office
- Tel: (025)8689-0070 Fax: (025)8689-0125
- Qingdao Branch
- Tel: (532)8579-3328 Fax: (532)8579-3329
- · Shenzhen Branch Tel: (0755)2399-6897 Fax: (0755)2399-5573
- Dalian Branch Tel: (0411)8368-6882 Fax: (0411)8369-0822
- Toshiba Electronics Asia, Ltd. Tel: 2375-6111 Fax: 2375-0969

Tsurong Xiamen Xiangyu Trading Co., Ltd. Tel: (0592)226-1398 Fax: (0592)226-1399

Toshiba Electronics Korea Corporation Tel: (02)3484-4334 Fax: (02)3484-4302

Toshiba Electronics Taiwan Corporation Tel: (02)2508-9988 Fax: (02)2508-9999

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notic
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and Though to share solutions which achieve House's dealing and reliability. House's dealers and esponsible are responsible for complying adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, his document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Product may include products subject to foreign exchange and foreign trade control laws
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

©2012 TOSHIBA CORPORATION Previous edition: SCE0024F

TOSHIBA CORPORATION Semiconductor & Storage Products Company

Website: http://www.semicon.toshiba.co.jp/eng

2012-12

SCE0024G